A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives

被引:91
作者
Baleanu, Dumitru [1 ,2 ]
Trujillo, Juan I. [3 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, R-76900 Magurele, Romania
[3] Univ La Laguna, Dept Anal Matemat, Tenerife 38271, Spain
关键词
Fractional Lagrangians; Fractional calculus; Fractional Caputo derivative; Fractional Euler-Lagrange equations; Faa di Bruno formula; LINEAR VELOCITIES; CLASSICAL FIELDS; FORMULATION; MECHANICS; FORMALISM;
D O I
10.1016/j.cnsns.2009.05.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we have investigated the fractional Caputo derivative of a composition function. The obtained results were applied to investigate the fractional Euler-Lagrange and Hamilton equations for constrained systems. The approach was applied within an illustrative. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1111 / 1115
页数:5
相关论文
共 36 条
[21]   Fractional relaxation-oscillation and fractional diffusion-wave phenomena [J].
Mainardi, F .
CHAOS SOLITONS & FRACTALS, 1996, 7 (09) :1461-1477
[22]  
Mainardi F., 2003, Fract. Calc. Appl. Anal., V6, P441
[23]   Hamiltonian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Muslih, SI ;
Baleanu, D ;
Rabei, E .
PHYSICA SCRIPTA, 2006, 73 (05) :436-438
[24]   Formulation of Hamiltonian equations for fractional variational problems [J].
Muslih, SI ;
Baleanu, D .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (06) :633-642
[25]   Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives [J].
Muslih, SI ;
Baleanu, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (02) :599-606
[26]   Time fractional Schrodinger equation [J].
Naber, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (08) :3339-3352
[27]   SINGULAR LAGRANGIANS WITH HIGHER DERIVATIVES [J].
NESTERENKO, VV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (10) :1673-1687
[28]  
Podlubny I., 1999, Fractional Differential Equations
[29]   Potentials of arbitrary forces with fractional derivatives [J].
Rabei, EM ;
Alhalholy, TS .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 (17-18) :3083-3092
[30]   The Hamilton formalism with fractional derivatives [J].
Rabei, Eqab M. ;
Nawafleh, Khaled I. ;
Hijjawi, Raed S. ;
Muslih, Sami I. ;
Baleanu, Dumitru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) :891-897