Fabrication of densely packed, well-ordered, high-aspect-ratio silicon nanopillars over large areas using block copolymer lithography

被引:63
作者
Gowrishankar, Vignesh
Miller, Nathaniel
McGehee, Michael D. [1 ]
Misner, Matthew J.
Ryu, Du Yeol
Russell, Thomas P.
Drockenmuller, Eric
Hawker, Craia J.
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA
[3] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
关键词
block-copolymer; lithography; high-aspect-ratio; lift-off nanopillars; reactive ion etching;
D O I
10.1016/j.tsf.2006.01.064
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fabrication process for well-ordered nanopillars over large substrate areas. which are taller than 100nm. have aspect ratios as high as 10: 1 and occur with a periodicity of less than 35nm is described. Various unique aspects of the materials and processing techniques enabled key features of the nanostructures: block copolymer lithography facilitated the small periodicity and the well-ordered arrangement of the pillars. a unique lift-off technique overcame potentially prohibitive lift-off problems. and a highly selective and anisotropic NF3 based reactive ion etching achieved the final nanopillar structure. The specifies of the processing call be suitably modified to obtain pillars with different physical characteristics. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:289 / 294
页数:6
相关论文
共 20 条
[1]   Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication [J].
Black, CT ;
Guarini, KW ;
Milkove, KR ;
Baker, SM ;
Russell, TP ;
Tuominen, MT .
APPLIED PHYSICS LETTERS, 2001, 79 (03) :409-411
[2]   Fabrication of nanostructures with long-range order using block copolymer lithography [J].
Cheng, JY ;
Ross, CA ;
Thomas, EL ;
Smith, HI ;
Vancso, GJ .
APPLIED PHYSICS LETTERS, 2002, 81 (19) :3657-3659
[3]  
Cheng JY, 2001, ADV MATER, V13, P1174, DOI 10.1002/1521-4095(200108)13:15<1174::AID-ADMA1174>3.0.CO
[4]  
2-Q
[5]   Conjugated polymer photovoltaic cells [J].
Coakley, KM ;
McGehee, MD .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4533-4542
[6]   Process integration of self-assembled polymer templates into silicon nanofabrication [J].
Guarini, KW ;
Black, CT ;
Zhang, Y ;
Kim, H ;
Sikorski, EM ;
Babich, IV .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (06) :2788-2792
[7]   Nanoscale patterning using self-assembled polymers for semiconductor applications [J].
Guarini, KW ;
Black, CT ;
Milkove, KR ;
Sandstrom, RL .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (06) :2784-2788
[8]   EFFICIENT PHOTODIODES FROM INTERPENETRATING POLYMER NETWORKS [J].
HALLS, JJM ;
WALSH, CA ;
GREENHAM, NC ;
MARSEGLIA, EA ;
FRIEND, RH ;
MORATTI, SC ;
HOLMES, AB .
NATURE, 1995, 376 (6540) :498-500
[9]   Lithography with a mask of block copolymer microstructures [J].
Harrison, C ;
Park, M ;
Chaikin, PM ;
Register, RA ;
Adamson, DH .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (02) :544-552
[10]   Using surface active random copolymers to control the domain orientation in diblock copolymer thin films [J].
Huang, E ;
Russell, TP ;
Harrison, C ;
Chaikin, PM ;
Register, RA ;
Hawker, CJ ;
Mays, J .
MACROMOLECULES, 1998, 31 (22) :7641-7650