Control Law Proposition for the Stabilization of Discrete Takagi-Sugeno Models

被引:98
作者
Guerra, Thierry Marie [1 ]
Kruszewski, Alexandre [2 ]
Bernal, Miguel [3 ]
机构
[1] Univ Valenciennes Hainaut Cambresis, CNRS, UMR 8530, Lab Automat & Mecan Ind & Humaines, F-59313 Valenciennes, France
[2] Ecole Cent Lille, CNRS, UMR 8146, LAGIS, F-59651 Villeneuve Dascq, France
[3] Natl Res Syst, Mexico City 03940, DF, Mexico
关键词
Linear matrix inequalities (LMI); Lyanupov functional; stabilization; Takagi-Sugeno discrete models; PIECEWISE LYAPUNOV FUNCTIONS; CONTROL-SYSTEM DESIGN; FUZZY-SYSTEMS; NONLINEAR-SYSTEMS; LMI; STABILITY; FORM; REDUCTION;
D O I
10.1109/TFUZZ.2008.928602
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with the stabilization of a class of discrete nonlinear models, namely those in the Takagi-Sugeno form; its main goal is to reduce conservatism of existing stabilization conditions using a special class of candidate Lyapunov functions and an enhanced control law. It is shown that the use of the aforementioned Lyapunov function leads to less-pessimistic solutions. The usefulness of the new control law is shown through several examples.
引用
收藏
页码:724 / 731
页数:8
相关论文
共 20 条
[1]  
[Anonymous], IEEE T SYST MAN CYB
[2]  
BOYD S, 1994, APPL MATH SERIES, V15
[3]   Continuous Takagi-Sugeno's models: Reduction of the number of LMI conditions in various fuzzy control design technics [J].
Delmotte, F. ;
Guerra, T. M. ;
Ksantini, M. .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (03) :426-438
[4]   Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno's form [J].
Ding, BC ;
Sun, HX ;
Yang, P .
AUTOMATICA, 2006, 42 (03) :503-508
[5]   Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions [J].
Feng, G .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (05) :605-612
[6]   LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form [J].
Guerra, TM ;
Vermeiren, L .
AUTOMATICA, 2004, 40 (05) :823-829
[7]   Piecewise quadratic stability of fuzzy systems [J].
Johansson, M ;
Rantzer, A ;
Årzén, KE .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (06) :713-722
[8]   Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: A new approach [J].
Kruszewski, A. ;
Wang, R. ;
Guerra, T. M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (02) :606-611
[9]  
KRUSZEWSKI A, 3 IFAC WORKSH AFNC 2
[10]  
KRUSZEWSKI A, 2005, P IEEE C DEC CONTR E