共 63 条
Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction
被引:120
作者:
Raghunathan, Anu
[1
]
Reed, Jennifer
[2
]
Shin, Sookil
[1
]
Palsson, Bernhard
[3
]
Daefler, Simon
[1
]
机构:
[1] Mt Sinai Sch Med, Dept Infect Dis, New York, NY USA
[2] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
[3] Univ Calif San Diego, Dept Bioengn, San Diego, CA 92103 USA
来源:
BMC SYSTEMS BIOLOGY
|
2009年
/
3卷
关键词:
ENTERICA SEROVAR TYPHIMURIUM;
GENOME-SCALE RECONSTRUCTION;
ESCHERICHIA-COLI;
MULTIDRUG-RESISTANCE;
PROTEOMIC ANALYSIS;
GENE-EXPRESSION;
NITRIC-OXIDE;
VIRULENCE;
NETWORK;
MODEL;
D O I:
10.1186/1752-0509-3-38
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Background: Infections with Salmonella cause significant morbidity and mortality worldwide. Replication of Salmonella typhimurium inside its host cell is a model system for studying the pathogenesis of intracellular bacterial infections. Genome-scale modeling of bacterial metabolic networks provides a powerful tool to identify and analyze pathways required for successful intracellular replication during host-pathogen interaction. Results: We have developed and validated a genome-scale metabolic network of Salmonella typhimurium LT2 (iRR1083). This model accounts for 1,083 genes that encode proteins catalyzing 1,087 unique metabolic and transport reactions in the bacterium. We employed flux balance analysis and in silico gene essentiality analysis to investigate growth under a wide range of conditions that mimic in vitro and host cell environments. Gene expression profiling of S. typhimurium isolated from macrophage cell lines was used to constrain the model to predict metabolic pathways that are likely to be operational during infection. Conclusion: Our analysis suggests that there is a robust minimal set of metabolic pathways that is required for successful replication of Salmonella inside the host cell. This model also serves as platform for the integration of high-throughput data. Its computational power allows identification of networked metabolic pathways and generation of hypotheses about metabolism during infection, which might be used for the rational design of novel antibiotics or vaccine strains.
引用
收藏
页数:16
相关论文