Device Requirements for Optical Interconnects to Silicon Chips

被引:1631
作者
Miller, David A. B. [1 ]
机构
[1] Stanford Univ, Ginzton Lab, Stanford, CA 94305 USA
关键词
International Technology Roadmap for Semiconductors (ITRS) roadmap; optical interconnections; optical modulators; PHOTONIC CRYSTAL; HIGH-SPEED; ON-CHIP; OPTOELECTRONIC-VLSI; HIGH-PERFORMANCE; GERMANIUM PHOTODETECTOR; ELECTROOPTIC MODULATORS; SPATIAL-DISPERSION; SWITCHING NETWORK; QUANTUM-WELLS;
D O I
10.1109/JPROC.2009.2014298
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We examine the current performance and future demands of interconnects to and on silicon chips. We compare electrical and optical interconnects and project the requirements for optoelectronic and optical devices if optics is to solve the major problems of interconnects for future high-performance silicon chips. Optics has potential benefits in interconnect density, energy, and timing. The necessity of low interconnect energy imposes low limits especially on the energy of the optical output devices, with a similar to 10 fJ/bit device energy target emerging. Some optical modulators and radical laser approaches may meet this requirement. Low (e.g., a few femtofarads or less) photodetector capacitance is important. Very compact wavelength splitters are essential for connecting the information to fibers. Dense waveguides are necessary on-chip or on boards for guided wave optical approaches, especially if very high clock rates or dense wavelength-division multiplexing (WDM) is to be avoided. Free-space optics potentially can handle the necessary bandwidths even without fast clocks or WDM. With such technology, however, optics may enable the continued scaling of interconnect capacity required by future chips.
引用
收藏
页码:1166 / 1185
页数:20
相关论文
共 169 条
[1]   Latency reduction in optical interconnects using short optical pulses [J].
Agarwal, D ;
Keeler, GA ;
Debaes, C ;
Nelson, BE ;
Helman, NC ;
Miller, DAB .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (02) :410-418
[2]   High performance, waveguide integrated Ge photodetectors [J].
Ahn, Donghwan ;
Hong, Ching-yin ;
Liu, Jifeng ;
Giziewicz, Wojciech ;
Beals, Mark ;
Kimerling, Lionel C. ;
Michel, Jurgen ;
Chen, Jian ;
Kartner, Franz X. .
OPTICS EXPRESS, 2007, 15 (07) :3916-3921
[3]   Nanotaper for compact mode conversion [J].
Almeida, VR ;
Panepucci, RR ;
Lipson, M .
OPTICS LETTERS, 2003, 28 (15) :1302-1304
[4]  
[Anonymous], 2007, PUBLIC LAW
[5]  
[Anonymous], SMART 2020 ENABLING
[6]   Photonic crystal light deflection devices using the superprism effect [J].
Baba, T ;
Nakamura, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (07) :909-914
[7]   A scalable 5-15 Gbps, 14-75 mW low-power I/O (transceiver in 65 nm CMOS [J].
Balamurugan, Ganesh ;
Kennedy, Joseph ;
Banerjee, Gaurab ;
Jaussi, James E. ;
Mansuri, Mozhgan ;
O'Mahony, Frank ;
Casper, Bryan ;
Mooney, Randy .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2008, 43 (04) :1010-1019
[8]   Design and construction of the high-speed optoelectronic memory system demonstrator [J].
Barbieri, Roberto ;
Benabes, Philippe ;
Bierhoff, Thomas ;
Caswell, Josh J. ;
Gauthier, Alain ;
Jahns, Juergen ;
Jarczynski, Manfred ;
Lukowicz, Paul ;
Oksman, Jacques ;
Russell, Gordon A. ;
Schrage, Juergen ;
Snowdon, John F. ;
Stuebbe, Oliver ;
Troster, Gerhard ;
Wirz, Marco .
APPLIED OPTICS, 2008, 47 (19) :3500-3512
[9]  
Barroso L. A., 2005, ACM Queue, V3, P48, DOI 10.1145/1095408.1095420
[10]   The case for energy-proportional computing [J].
Barroso, Luiz Andre ;
Hoelzle, Urs .
COMPUTER, 2007, 40 (12) :33-+