Heat conduction in graphene: experimental study and theoretical interpretation

被引:150
作者
Ghosh, S.
Nika, D. L.
Pokatilov, E. P.
Balandin, A. A. [1 ]
机构
[1] Univ Calif Riverside, Nanodevice Lab, Dept Elect Engn & Mat Sci, Riverside, CA 92521 USA
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
关键词
THERMAL-CONDUCTIVITY; TEMPERATURE; LAYER;
D O I
10.1088/1367-2630/11/9/095012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the results of our experimental investigation of heat conduction in suspended graphene and offer a theoretical interpretation of its extremely high thermal conductivity. The direct measurements of the thermal conductivity of graphene were performed using a non-contact optical technique and special calibration procedure with bulk graphite. The measured values were in the range of similar to 3000-5300 W mK(-1) near room temperature and depended on the lateral dimensions of graphene flakes. We explain the enhanced thermal conductivity of graphene as compared to that of bulk graphite basal planes by the two-dimensional nature of heat conduction in graphene over the whole range of phonon frequencies. Our calculations show that the intrinsic Umklapp-limited thermal conductivity of graphene grows with the increasing dimensions of graphene flakes and can exceed that of bulk graphite when the flake size is on the order of a few micrometers. The detailed theory, which includes the phonon-mode-dependent Gruneisen parameter and takes into account phonon scattering on graphene edges and point defects, gives numerical results that are in excellent agreement with the measurements for suspended graphene. Superior thermal properties of graphene are beneficial for all proposed graphene device applications.
引用
收藏
页数:19
相关论文
共 46 条
[11]   Energy Dissipation in Graphene Field-Effect Transistors [J].
Freitag, Marcus ;
Steiner, Mathias ;
Martin, Yves ;
Perebeinos, Vasili ;
Chen, Zhihong ;
Tsang, James C. ;
Avouris, Phaedon .
NANO LETTERS, 2009, 9 (05) :1883-1888
[12]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[13]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[14]   ANHARMONIC THERMAL RESISTIVITY OF DIELECTRIC CRYSTALS AT LOW-TEMPERATURES [J].
HAN, YJ ;
KLEMENS, PG .
PHYSICAL REVIEW B, 1993, 48 (09) :6033-6042
[15]   Thermal conductivity of single-walled carbon nanotubes [J].
Hone, J ;
Whitney, M ;
Piskoti, C ;
Zettl, A .
PHYSICAL REVIEW B, 1999, 59 (04) :R2514-R2516
[16]  
JIANG JW, 2009, ARXIV09021836V1
[17]   Large-scale pattern growth of graphene films for stretchable transparent electrodes [J].
Kim, Keun Soo ;
Zhao, Yue ;
Jang, Houk ;
Lee, Sang Yoon ;
Kim, Jong Min ;
Kim, Kwang S. ;
Ahn, Jong-Hyun ;
Kim, Philip ;
Choi, Jae-Young ;
Hong, Byung Hee .
NATURE, 2009, 457 (7230) :706-710
[18]   Thermal transport measurements of individual multiwalled nanotubes [J].
Kim, P ;
Shi, L ;
Majumdar, A ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :215502-1
[19]   Theory of the a-plane thermal conductivity of graphite [J].
Department of Physics, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3046 .
Journal of Wide Bandgap Materials, 2000, 7 (04) :332-339
[20]   Theory of thermal conduction in thin ceramic films [J].
Klemens, PG .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2001, 22 (01) :265-275