Energy Dissipation in Graphene Field-Effect Transistors

被引:333
作者
Freitag, Marcus [1 ]
Steiner, Mathias [1 ]
Martin, Yves [1 ]
Perebeinos, Vasili [1 ]
Chen, Zhihong [1 ]
Tsang, James C. [1 ]
Avouris, Phaedon [1 ]
机构
[1] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10591 USA
关键词
THERMAL-CONDUCTIVITY;
D O I
10.1021/nl803883h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We measure the temperature distribution in a biased single-layer graphene transistor using Raman scattering microscopy of the 2D-phonon band. Peak operating temperatures of 1050 K are reached in the middle of the graphene sheet at 210 kW cm(-2) of dissipated electric power. The metallic contacts act as heat sinks, but not in a dominant fashion. To explain the observed temperature profile and heating rate, we have to include heat flow from the graphene to the gate oxide underneath, especially at elevated temperatures, where the graphene thermal conductivity is lowered due to umklapp scattering. Velocity saturation due to phonons with about 50-60 meV energy is inferred from the measured charge density via shifts in the Raman G-phonon band, suggesting that remote scattering (through field coupling) by substrate polar surface phonons increases the energy transfer to the substrate and at the same time limits the high-bias electronic conduction of graphene.
引用
收藏
页码:1883 / 1888
页数:6
相关论文
共 38 条
  • [1] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [2] Unusually high thermal conductivity of carbon nanotubes
    Berber, S
    Kwon, YK
    Tománek, D
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (20) : 4613 - 4616
  • [3] Temperature-dependent transport in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Hone, J.
    Stormer, H. L.
    Kim, P.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (09)
  • [4] Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes
    Bushmaker, Adam W.
    Deshpande, Vikram V.
    Bockrath, Marc W.
    Cronin, Stephen B.
    [J]. NANO LETTERS, 2007, 7 (12) : 3618 - 3622
  • [5] Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices
    Calizo, I.
    Miao, F.
    Bao, W.
    Lau, C. N.
    Balandin, A. A.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (07)
  • [6] CALIZO I, 2008, P SOC PHOTO-OPT INS, V7037, P70371
  • [7] Intrinsic and extrinsic performance limits of graphene devices on SiO2
    Chen, Jian-Hao
    Jang, Chaun
    Xiao, Shudong
    Ishigami, Masa
    Fuhrer, Michael S.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 206 - 209
  • [8] Graphene nano-ribbon electronics
    Chen, Zhihong
    Lin, Yu-Ming
    Rooks, Michael J.
    Avouris, Phaedon
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) : 228 - 232
  • [9] Ballistic phonon thermal transport in multiwalled carbon nanotubes -: art. no. 226101
    Chiu, HY
    Deshpande, VV
    Postma, HWC
    Lau, CN
    Mikó, C
    Forró, L
    Bockrath, M
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (22)
  • [10] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    Das, A.
    Pisana, S.
    Chakraborty, B.
    Piscanec, S.
    Saha, S. K.
    Waghmare, U. V.
    Novoselov, K. S.
    Krishnamurthy, H. R.
    Geim, A. K.
    Ferrari, A. C.
    Sood, A. K.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 210 - 215