Thermal and electrical properties of Nb2AlC, (Ti, Nb)2AlC and Ti2AlC

被引:164
作者
Barsoum, MW [1 ]
Salama, I
El-Raghy, T
Golczewski, J
Porter, WD
Wang, H
Seifert, HJ
Aldinger, F
机构
[1] Drexel Univ, Dept Mat Engn, Philadelphia, PA 19104 USA
[2] Max Planck Inst Met Res, Stuttgart, Germany
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2002年 / 33卷 / 09期
基金
美国国家科学基金会;
关键词
D O I
10.1007/s11661-002-0262-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The heat capacities, thermal-expansion coefficients, thermal and electrical conductivities of Nb2AlC (actual Nb:Al:C mole fractions: 0.525 +/- 0.005, 0.240 +/- 0.002, and 0.235 +/- 0.005, respectively), Ti2AlC and (Ti, Nb)(2)AlC (actual Ti:Nb:Al:C mole fractions: 0.244 +/- 0.005, 0.273 +/- 0.005, 0.240 +/- 0.003, and 0.244 +/- 0.005, respectively) were measured as a function of temperature. These ternaries are good electrical conductors, with a resistivity that increases linearly with increasing temperatures. The resistivity of (Ti, Nb)(2)AlC is higher than the other members, indicating a solid-solution scattering effect. The thermal-expansion coefficients, in the 25 degreesC to 1000 degreesC temperature range, are comparable and fall in the narrow range of 8.7 to 8.9 x 10(-6) K-1, with that of the solid solution being the highest. They are all good conductors of heat, with thermal conductivities in the range between 15 to 45 W/m K at room temperature. The electronic component of the thermal conductivity is the dominant mechanism at all temperatures for Nb2AlC and (Ti, Nb)(2)AlC. The conductivity of Ti2AlC, on the other hand, is high because the phonon contribution to the conductivity is nonnegligible.
引用
收藏
页码:2775 / 2779
页数:5
相关论文
共 28 条
[11]   Synthesis and characterization of Hf2PbC, Zr2PbC and M2SnC (M = Ti, Hf, Nb or Zr) [J].
El-Raghy, T ;
Chakraborty, S ;
Barsoum, MW .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2000, 20 (14-15) :2619-2625
[12]   Low temperature dependencies of the elastic properties of Ti4AlN3, Ti3Al1.1C1.8, and Ti3SiC2 [J].
Finkel, P ;
Barsoum, MW ;
El-Raghy, T .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (04) :1701-1703
[13]   Low temperature heat capacities of Ti3Al1.1C1.8, Ti4AlN3, and Ti3SiC2 [J].
Ho, JC ;
Hamdeh, HH ;
Barsoum, MW ;
El-Raghy, T .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (07) :3609-3611
[14]   KOHLENSTOFFHALTIGE TERNARE VERBINDUNGEN (H-PHASE) [J].
JEITSCHKO, W ;
NOWOTNY, H ;
BENESOVSKY, F .
MONATSHEFTE FUR CHEMIE, 1963, 94 (04) :672-&
[15]   Localized vibrational modes in metallic solids [J].
Keppens, V ;
Mandrus, D ;
Sales, BC ;
Chakoumakos, BC ;
Dai, P ;
Coldea, R ;
Maple, MB ;
Gajewski, DA ;
Freeman, EJ ;
Bennington, S .
NATURE, 1998, 395 (6705) :876-878
[16]   SOLID-STATE PROPERTIES OF GROUP IVB CARBONITRIDES [J].
LENGAUER, W ;
BINDER, S ;
AIGNER, K ;
ETTMAYER, P ;
GUILLOU, A ;
DEBUIGNE, J ;
GROBOTH, G .
JOURNAL OF ALLOYS AND COMPOUNDS, 1995, 217 (01) :137-147
[17]  
Nowotny H., 1970, Prog. Soild State Chem, V2, P27, DOI DOI 10.1016/0022-4596(70)90028-9
[18]  
Pierson H.O., 1997, Handbook of Refractory Carbides Nitrides: Properties, Characteristics, Processing and Apps, V1st
[19]  
Procopio AT, 2000, METALL MATER TRANS A, V31, P333
[20]   LATTICE THERMAL CONDUCTIVITY OF SUPERCONDUCTING NIOBIUM CARBIDE [J].
RADOSEVI.LG ;
WILLIAMS, WS .
PHYSICAL REVIEW, 1969, 188 (02) :770-&