Photon penetration and scatter in micro-pinhole imaging: a Monte Carlo investigation

被引:32
作者
van der Have, F
Beekman, FJ
机构
[1] UMC, Image Sci Inst, NL-3584 CC Utrecht, Netherlands
[2] UMC, Rudolf Magnus Inst Neurosci, NL-3584 CC Utrecht, Netherlands
关键词
D O I
10.1088/0031-9155/49/8/001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Pinhole SPECT is rapidly gaining popularity for imaging laboratory animals using gamma-emitting molecules. Penetration and scattering of gamma radiation in the pinhole edge material can account for a significant fraction of the total number of photons detected, particularly if the pinholes have small diameters. This study characterizes the effects of penetration and scatter with micro-pinholes made of lead, tungsten, gold and platinum. Monte Carlo simulations are performed for I-125 (27-35 keV) and Tc-99m (140 keV) point sources with pinhole diameters ranging from 50 to 500 mum. The simulations account for the effects of photo-electric interaction, Rayleigh scattering, Compton scattering, ionization, bremsstrahlung and electron multiple scattering. As a typical example, in the case of a Tc-99m point source and pinholes with a diameter of 300 mum in gold or platinum, approximately 55% of the photons detected resulted from penetration and approximately 3% from scatter. For pinhole diameters ranging from 100 to 500 mum, the penetration fraction for tungsten and lead was approx a factor of 1.0 to 1.6 higher and the scatter fraction was 1.0 to 1.8 times higher than in case of gold or platinum. Using I-125 instead of Tc-99m decreases the penetration fraction by a factor ranging from 3 to 11 and the scatter fraction by a factor ranging from 12 to 40. For all materials studied, the total amounts of penetrated and scattered photons changed approximately linearly with respect to the pinhole diameter.
引用
收藏
页码:1369 / 1386
页数:18
相关论文
共 39 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]  
Anger H. O., 1967, INSTRUM NUCL, V1, P485
[3]   Improved SPECT quantitation using fully three-dimensional iterative spatially variant scatter response compensation [J].
Beekman, FJ ;
Kamphuis, C ;
Viergever, MA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1996, 15 (04) :491-499
[4]   High-resolution emission tomography of small laboratory animals: physics and gamma-astronomy meet molecular biology [J].
Beekman, FJ ;
Colijn, AP ;
Vastenhouw, B ;
Wiegant, VM ;
Gerrits, MAFM .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 509 (1-3) :229-234
[5]   Towards in vivo nuclear microscopy: iodine-125 imaging in mice using micro-pinholes [J].
Beekman, FJ ;
McElroy, DP ;
Berger, F ;
Gambhir, SS ;
Hoffman, EJ ;
Cherry, SR .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2002, 29 (07) :933-938
[6]   Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation [J].
Beekman, FJ ;
de Jong, HWAM ;
van Geloven, S .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (08) :867-877
[7]  
BEEKMAN FJ, 2002, C P 2002 IEEE NUCL S
[8]  
Berger MJ, 1999, NATL I STANDARDS TEC
[9]  
BUVAT I, 1995, J NUCL MED, V36, P1476
[10]  
*CERN, GENAT 4 HOM PAG