Exciton-polariton lasing and amplification based on exciton-exciton scattering in CdTe microcavity quantum wells -: art. no. 165314

被引:53
作者
Huang, R [1 ]
Yamamoto, Y
André, R
Bleuse, J
Muller, M
Ulmer-Tuffigo, H
机构
[1] Stanford Univ, Edward L Ginzton Lab, JST, ICORP,Quantum Entanglement Project, Stanford, CA 94305 USA
[2] NTT Corp, Basic Res Labs, Atsugi, Kanagawa, Japan
[3] CEA Ctr Etud Grenoble, Dept Rech Fondamentale Mat Condensee, Grenoble, France
来源
PHYSICAL REVIEW B | 2002年 / 65卷 / 16期
关键词
D O I
10.1103/PhysRevB.65.165314
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We describe experiments demonstrating an exciton-polariton laser and amplifier based on an incoherent exciton-polariton reservoir in CdTe microcavity quantum wells. The gain mechanism is real excited exciton-exciton scattering, in which excitons created at large in-plane wave vectors are thermalized and accumulate at the bottleneck lower polariton states at smaller in-plane wave vectors. Because the exciton-exciton scattering rate for CdTe at the saturation density is higher than that for GaAs, the threshold for spontaneous polariton lasing is more easily reached in the case of CdTe with respect to GaAs. We demonstrate a high-gain amplification of bottleneck lower polaritons close to the lasing threshold. By performing a pulsed pump and probe experiment, we observe unambiguous evidence of real excited exciton-exciton scattering gain in the form of exp(const N(exc)(2)), where N(exc) is the exciton-polariton reservoir population. This result is in sharp contrast to the recently demonstrated parametric polariton amplifier based on virtual coherent four wave mixing, in which gain is proportional to exp(const N(exc)).
引用
收藏
页码:1653141 / 1653147
页数:7
相关论文
共 27 条
  • [1] Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation
    Baumberg, JJ
    Savvidis, PG
    Stevenson, RM
    Tartakovskii, AI
    Skolnick, MS
    Whittaker, DM
    Roberts, JS
    [J]. PHYSICAL REVIEW B, 2000, 62 (24) : 16247 - 16250
  • [2] Evidence of polariton stimulation in semiconductor microcavities
    Boeuf, F
    André, R
    Romestain, R
    Dang, LS
    Peronne, E
    Lampin, JF
    Hulin, D
    Alexandrou, A
    [J]. PHYSICAL REVIEW B, 2000, 62 (04): : R2279 - R2282
  • [3] Transition from a microcavity exciton polariton to a photon laser
    Cao, H
    Pau, S
    Jacobson, JM
    Bjork, G
    Yamamoto, Y
    Imamoglu, A
    [J]. PHYSICAL REVIEW A, 1997, 55 (06) : 4632 - 4635
  • [4] DIRECT CREATION OF QUANTUM-WELL EXCITONS BY ELECTRON RESONANT-TUNNELING
    CAO, H
    KLIMOVITCH, G
    BJORK, G
    YAMAMOTO, Y
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (06) : 1146 - 1149
  • [5] Theory of the angle-resonant polariton amplifier
    Ciuti, C
    Schwendimann, P
    Deveaud, B
    Quattropani, A
    [J]. PHYSICAL REVIEW B, 2000, 62 (08): : R4825 - R4828
  • [6] Stimulation of polariton photoluminescence in semiconductor microcavity
    Dang, LS
    Heger, D
    Andre, R
    Boeuf, F
    Romestain, R
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (18) : 3920 - 3923
  • [7] Coherent and incoherent polaritonic gain in a planar semiconductor microcavity
    Dasbach, G
    Baars, T
    Bayer, M
    Larionov, A
    Forchel, A
    [J]. PHYSICAL REVIEW B, 2000, 62 (19) : 13076 - 13083
  • [8] Polariton effects on first-order Raman scattering in II-VI microcavities
    Fainstein, A
    Jusserand, B
    Andre, R
    [J]. PHYSICAL REVIEW B, 1998, 57 (16): : R9439 - R9442
  • [9] Stimulated scattering of excitons into microcavity polaritons
    Huang, R
    Tassone, F
    Yamamoto, Y
    [J]. MICROELECTRONIC ENGINEERING, 1999, 47 (1-4) : 325 - 327
  • [10] Experimental evidence of stimulated scattering of excitons into microcavity polaritons
    Huang, R
    Tassone, F
    Yamamoto, Y
    [J]. PHYSICAL REVIEW B, 2000, 61 (12): : R7854 - R7857