Urea biosensors based on immobilization of urease into two oppositely charged clays (Laponite and Zn-Al layered double hydroxides)

被引:131
作者
de Melo, JV
Cosnier, S
Mousty, C
Martelet, C
Jaffrezic-Renault, N
机构
[1] Ecole Cent Lyon, Lab Ingn & Fonctionnalisat Surfaces, CNRS, UMR 5621, F-69131 Ecully, France
[2] Univ Grenoble 1, Lab Electrochim Organ & Photochim Redox, CNRS, UMR 5630, F-38041 Grenoble 9, France
关键词
D O I
10.1021/ac025627+
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Enzyme-based field effect transistors (ENFETs) for urea determination were developed based on the immobilization of urease within two different clay matrixes, one cationic (Laponite) and the other anionic (layered double hydroxide (LDH)), cross-linked with glutaraldehyde. The biosensor based on the enzyme immobilized in Laponite shows a greater sensitivity and smaller dynamic linear range, because the enzymatic reaction is protected from the effect of the buffer capacity of the outer medium. The apparent Michaelis-Menten constant, K-m(app), is quite similar for both biosensors. Inhibition of the enzyme by sodium tetraborate was investigated. Tetraborate acts as a competitive inhibitor for urease in the two different types of clay, the inhibitor effect being stronger for the LDH/urease biosensor. In particular, the maximum limit of the dynamic linear range extends from 1.4 mM in the absence of the inhibitor to 12 mM in the presence of 0.5 mM tetraborate. The AZPP values in the presence of 0.5 mM tetraborate for Laponite and LDH biomembranes were 10 and 62 mM, respectively. Comparison of the inhibition constant values, K-i 0.16 and 0.05 mM for Laponite and LDH biosensors, respectively, clearly indicates a stronger enzyme-inhibitor interaction in the LDH/urease biomembrane.
引用
收藏
页码:4037 / 4043
页数:7
相关论文
共 38 条
  • [31] ELECTRODES MODIFIED WITH SYNTHETIC ANIONIC CLAYS
    THERIAS, S
    MOUSTY, C
    [J]. APPLIED CLAY SCIENCE, 1995, 10 (1-2) : 147 - 162
  • [32] Electrochemical study of ferrocene and nitroxide derivatives intercalated in Zn-Cr and Zn-Al layered double hydroxides
    Therias, S
    Lacroix, B
    Schollhorn, B
    Mousty, C
    Palvadeau, P
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1998, 454 (1-2) : 91 - 97
  • [33] Electrochemical transfer at anionic clay modified electrodes. Case of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate)
    Therias, S
    Mousty, C
    Forano, C
    Besse, JP
    [J]. LANGMUIR, 1996, 12 (20) : 4914 - 4920
  • [34] Urease-based biosensor for mercuric ions determination
    Volotovsky, V
    Nam, YJ
    Kim, N
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 1997, 42 (03) : 233 - 237
  • [35] Volotovsky V, 1998, ELECTROANAL, V10, P61
  • [36] Zeolite-modified electrodes: Analytical applications and prospects
    Walcarius, A
    [J]. ELECTROANALYSIS, 1996, 8 (11) : 971 - 986
  • [37] Sol-gel materials for electrochemical biosensors
    Wang, J
    [J]. ANALYTICA CHIMICA ACTA, 1999, 399 (1-2) : 21 - 27
  • [38] APPLICATION OF UREASE CONDUCTOMETRIC BIOSENSOR FOR HEAVY-METAL ION DETERMINATION
    ZHYLYAK, GA
    DZYADEVICH, SV
    KORPAN, YI
    SOLDATKIN, AP
    ELSKAYA, AV
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 1995, 24 (1-3) : 145 - 148