Spin-3/2 physics of semiconductor hole nanowires: Valence-band mixing and tunable interplay between bulk-material and orbital bound-state spin splittings

被引:49
作者
Csontos, D. [1 ,2 ]
Brusheim, P. [3 ,4 ]
Zuelicke, U. [1 ,2 ,5 ]
Xu, H. Q. [3 ]
机构
[1] Massey Univ, Inst Fundamental Sci, Palmerston North 4442, New Zealand
[2] Massey Univ, MacDiarmid Inst Adv Mat & Nanotechnol, Palmerston North 4442, New Zealand
[3] Lund Univ, Div Solid State Phys, S-22100 Lund, Sweden
[4] Inst High Performace Comp, Singapore 138632, Singapore
[5] Massey Univ, Ctr Theoret Chem & Phys, Auckland 0745, New Zealand
基金
瑞典研究理事会;
关键词
bound states; crystal symmetry; g-factor; magnetoelectronics; nanowires; semiconductor quantum wires; spin polarised transport; spin systems; valence bands; Zeeman effect; NANOMETER-SCALE GAAS; ELECTRONIC-STRUCTURE; GROWTH; CONDUCTANCE; SPINTRONICS; PERFORMANCE; INJECTION; TRANSPORT;
D O I
10.1103/PhysRevB.79.155323
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a detailed theoretical study of the electronic spectrum and Zeeman splitting in hole quantum wires. The spin-3/2 character of the topmost bulk-valence-band states results in a strong variation in subband-edge g factors between different subbands. We elucidate the interplay between quantum confinement and heavy-hole-light-hole mixing and identify a certain robustness displayed by low-lying hole-wire subband edges with respect to changes in the shape or strength of the wire potential. The ability to address individual subband edges in, e.g., transport or optical experiments enables the study of hole states with nonstandard spin polarization, which do not exist in spin-3/2 systems. Changing the aspect ratio of hole wires with rectangular cross section turns out to strongly affect the g factor of subband edges, providing an opportunity for versatile in situ tuning of hole-spin properties with possible application in spintronics. The relative importance of cubic crystal symmetry is discussed, as well as the spin splitting away from zone-center subband edges.
引用
收藏
页数:16
相关论文
共 83 条
[1]   CUBIC CONTRIBUTIONS TO SPHERICAL MODEL OF SHALLOW ACCEPTOR STATES [J].
BALDERES.A ;
LIPARI, NO .
PHYSICAL REVIEW B, 1974, 9 (04) :1525-1539
[2]   SPHERICAL MODEL OF SHALLOW ACCEPTOR STATES IN SEMICONDUCTORS [J].
BALDERESCHI, A ;
LIPARI, NO .
PHYSICAL REVIEW B, 1973, 8 (06) :2697-2709
[3]  
BASTARD G, 1991, SOLID STATE PHYS, V44, P229
[4]   Nanowire resonant tunneling diodes [J].
Björk, MT ;
Ohlsson, BJ ;
Thelander, C ;
Persson, AI ;
Deppert, K ;
Wallenberg, LR ;
Samuelson, L .
APPLIED PHYSICS LETTERS, 2002, 81 (23) :4458-4460
[5]   One-dimensional steeplechase for electrons realized [J].
Björk, MT ;
Ohlsson, BJ ;
Sass, T ;
Persson, AI ;
Thelander, C ;
Magnusson, MH ;
Deppert, K ;
Wallenberg, LR ;
Samuelson, L .
NANO LETTERS, 2002, 2 (02) :87-89
[6]   Vertical high-mobility wrap-gated InAs nanowire transistor [J].
Bryllert, T ;
Wernersson, LE ;
Fröberg, LE ;
Samuelson, L .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (05) :323-325
[7]   OSCILLATORY EFFECTS AND THE MAGNETIC-SUSCEPTIBILITY OF CARRIERS IN INVERSION-LAYERS [J].
BYCHKOV, YA ;
RASHBA, EI .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (33) :6039-6045
[8]   INTERBAND OPTICAL-TRANSITIONS IN GAAS-GA1-XALXAS AND INAS-GASB SUPERLATTICES [J].
CHANG, YC ;
SCHULMAN, JN .
PHYSICAL REVIEW B, 1985, 31 (04) :2069-2079
[9]   Quantum shape effects on Zeeman splittings in semiconductor nanostructures [J].
Chen, PC .
PHYSICAL REVIEW B, 2005, 72 (04)
[10]   Tailoring hole spin splitting and polarization in nanowires [J].
Csontos, D. ;
Zuelicke, U. .
APPLIED PHYSICS LETTERS, 2008, 92 (02)