The hydrodynamic focusing effect inside rectangular microchannels

被引:176
作者
Lee, Gwo-Bin [1 ]
Chang, Chih-Chang [1 ]
Huang, Sung-Bin [1 ]
Yang, Ruey-Jen [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Engn Sci, Tainan 701, Taiwan
关键词
D O I
10.1088/0960-1317/16/5/020
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a theoretical and experimental investigation into the hydrodynamic focusing effect in rectangular microchannels. Two theoretical models for two-dimensional hydrodynamic focusing are proposed. The first model predicts the width of the focused stream in symmetric hydrodynamic focusing in microchannels of various aspect ratios. The second model predicts the location and the width of the focused stream in asymmetric hydrodynamic focusing in microchannels with a low or high aspect ratio. In both models, the theoretical results are shown to be in good agreement with the experimental data. Hence, the models provide a useful means of performing a theoretical analysis of flow control in microfluidic devices using hydrodynamic focusing effects. The ability of the proposed models to control the focused stream within a micro flow cytometer is verified in a series of experimental trials performed using polystyrene microparticles with a diameter of 20 mu m. The experimental data show that the width of the focused stream can be reduced to the same order of magnitude as that of the particle size. Furthermore, it is shown that the microparticles can be successfully hydrodynamically focused and switched to the desired outlet port of the cytometer. Hence, the models presented in this study provide sufficient control to support cell/particle counting and sorting applications.
引用
收藏
页码:1024 / 1032
页数:9
相关论文
共 32 条
[1]   Controlled microfluidic interfaces [J].
Atencia, J ;
Beebe, DJ .
NATURE, 2005, 437 (7059) :648-655
[2]   Modular concept of a laboratory on a chip for chemical and biochemical analysis [J].
Blankenstein, G ;
Larsen, UD .
BIOSENSORS & BIOELECTRONICS, 1998, 13 (3-4) :427-438
[3]   A DEVICE FOR COUNTING SMALL PARTICLES SUSPENDED IN A FLUID THROUGH A TUBE [J].
CROSLANDTAYLOR, PJ .
NATURE, 1953, 171 (4340) :37-38
[4]   Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection [J].
Fu, LM ;
Yang, RJ ;
Lin, CH ;
Pan, YJ ;
Lee, GB .
ANALYTICA CHIMICA ACTA, 2004, 507 (01) :163-169
[5]   Formation of monodisperse bubbles in a microfluidic flow-focusing device [J].
Garstecki, P ;
Gitlin, I ;
DiLuzio, W ;
Whitesides, GM ;
Kumacheva, E ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2004, 85 (13) :2649-2651
[6]   Femtomole mixer for microsecond kinetic studies of protein folding [J].
Hertzog, DE ;
Michalet, X ;
Jäger, M ;
Kong, XX ;
Santiago, JG ;
Weiss, S ;
Bakajin, O .
ANALYTICAL CHEMISTRY, 2004, 76 (24) :7169-7178
[7]   Microfluidics for flow cytometric analysis of cells and particles [J].
Huh, D ;
Gu, W ;
Kamotani, Y ;
Grotberg, JB ;
Takayama, S .
PHYSIOLOGICAL MEASUREMENT, 2005, 26 (03) :R73-R98
[8]   Use of air-liquid two-phase flow in hydrophobic microfluidic channels for disposable flow cytometers [J].
Huh, D ;
Tung, YC ;
Wei, HH ;
Grotberg, JB ;
Skerlos, SJ ;
Kurabayashi, K ;
Takayama, S .
BIOMEDICAL MICRODEVICES, 2002, 4 (02) :141-149
[9]   Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds [J].
Knight, JB ;
Vishwanath, A ;
Brody, JP ;
Austin, RH .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3863-3866
[10]   Micromachine-based multi-channel flow cytometers for cell/particle counting and sorting [J].
Lee, GB ;
Lin, CH ;
Chang, SC .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (03) :447-454