Controlled synthesis of single-chirality carbon nanotubes

被引:477
作者
Sanchez-Valencia, Juan Ramon [1 ]
Dienel, Thomas [1 ]
Groening, Oliver [1 ]
Shorubalko, Ivan [2 ]
Mueller, Andreas [3 ]
Jansen, Martin [3 ]
Amsharov, Konstantin [3 ]
Ruffieux, Pascal [1 ]
Fasel, Roman [1 ,4 ]
机构
[1] Empa, Swiss Fed Labs Mat Sci & Technol, Nanotech Surfaces Lab, CH-8600 Dubendorf, Switzerland
[2] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Reliabil Sci & Technol, CH-8600 Dubendorf, Switzerland
[3] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[4] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
SURFACE-CATALYZED CYCLODEHYDROGENATION; CAP PRECURSOR MOLECULES; GROWTH-MECHANISM; AROMATIC PRECURSORS; FULLERENES; SEPARATION; NANORINGS; MODES; METAL;
D O I
10.1038/nature13607
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Over the past two decades, single-walled carbon nanotubes (SWCNTs) have received much attention because their extraordinary properties are promising for numerous applications(1,2). Many of these properties depend sensitively on SWCNT structure, which is characterized by the chiral index (n,m) that denotes the length and orientation of the circumferential vector in the hexagonal carbon lattice. Electronic properties are particularly strongly affected, with subtle structural changes switching tubes from metallic to semiconducting with various band-gaps. Monodisperse 'single-chirality' (that is, with a single (n, m) index) SWCNTs are thus needed to fully exploit their technological potential(1,2). Controlled synthesis through catalyst engineering(3-6), end-cap engineering(7) or cloning strategies(8,9), and also tube sorting based on chromatography(10,11), density-gradient centrifugation, electrophoresis and other techniques(12), have delivered SWCNT samples with narrow distributions of tube diameter and a large fraction of a predetermined tube type. But an effective pathway to truly monodisperse SWCNTs remains elusive. The use of template molecules to unambiguously dictate the diameter and chirality of the resulting nanotube(8,13-16) holds great promise in this regard, but has hitherto had only limited practical success(7,17,18). Here we show that this bottom-up strategy can produce targeted nanotubes: we convert molecular precursors into ultrashort singly capped (6,6) 'armchair' nanotube seeds using surface-catalysed cyclodehydrogenation on a platinum (111) surface, and then elongate these during a subsequent growth phase to produce single-chirality and essentially defect-free SWCNTs with lengths up to a few hundred nanometres. We expect that our on-surface synthesis approach will provide a route to nanotube-based materials with highly optimized properties for applications such as light detectors, photovoltaics, field-effect transistors and sensors(2).
引用
收藏
页码:61 / +
页数:11
相关论文
共 30 条
[21]   Diameter-selective Raman scattering from vibrational modes in carbon nanotubes [J].
Rao, AM ;
Richter, E ;
Bandow, S ;
Chase, B ;
Eklund, PC ;
Williams, KA ;
Fang, S ;
Subbaswamy, KR ;
Menon, M ;
Thess, A ;
Smalley, RE ;
Dresselhaus, G ;
Dresselhaus, MS .
SCIENCE, 1997, 275 (5297) :187-191
[22]   Forming aromatic hemispheres on transition-metal surfaces [J].
Rim, Kwang Taeg ;
Siaj, Mohamed ;
Xiao, Shengxiong ;
Myers, Matthew ;
Carpentier, Vincent D. ;
Liu, Li ;
Su, Chaochin ;
Steigerwald, Michael L. ;
Hybertsen, Mark S. ;
McBreen, Peter H. ;
Flynn, George W. ;
Nuckolls, Colin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (41) :7891-7895
[23]   Single wall carbon nanotube amplification: En route to a type-specific growth mechanism [J].
Smalley, Richard E. ;
Li, Yubao ;
Moore, Valerie C. ;
Price, B. Katherine ;
Colorado, Ramon, Jr. ;
Schmidt, Howard K. ;
Hauge, Robert H. ;
Barron, Andrew R. ;
Tour, James M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (49) :15824-15829
[24]  
Soares J. S., 2012, J NANOTECHNOL, P1, DOI DOI 10.1155/2012/512738
[25]   Chiral Index Dependence of the G+ and G- Raman Modes in Semiconducting Carbon Nanotubes [J].
Telg, Hagen ;
Duque, Juan G. ;
Staiger, Matthias ;
Tu, Xiaomin ;
Hennrich, Frank ;
Kappes, Manfred M. ;
Zheng, Ming ;
Maultzsch, Janina ;
Thomsen, Christian ;
Doorn, Stephen K. .
ACS NANO, 2012, 6 (01) :904-911
[26]   DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes [J].
Tu, Xiaomin ;
Manohar, Suresh ;
Jagota, Anand ;
Zheng, Ming .
NATURE, 2009, 460 (7252) :250-253
[27]   Selective Synthesis of (9,8) Single Walled Carbon Nanotubes on Cobalt Incorporated TUD-1 Catalysts [J].
Wang, Hong ;
Wang, Bo ;
Quek, Xian-Yang ;
Wei, Li ;
Zhao, Jianwen ;
Li, Lain-Jong ;
Chan-Park, Mary B. ;
Yang, Yanhui ;
Chen, Yuan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (47) :16747-16749
[28]   Vertical array growth of small diameter single-walled carbon nanotubes [J].
Xu, Ya-Qiong ;
Flor, Erica ;
Kim, Myung Jong ;
Hamadani, Behrang ;
Schmidt, Howard ;
Smalley, Richard E. ;
Hauge, Robert H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (20) :6560-6561
[29]   "Cloning" of Single-Walled Carbon Nanotubes via Open-End Growth Mechanism [J].
Yao, Yagang ;
Feng, Chaoqun ;
Zhang, Jin ;
Liu, Zhongfan .
NANO LETTERS, 2009, 9 (04) :1673-1677
[30]   Cap Formation Engineering: From Opened C60 to Single-Walled Carbon Nanotubes [J].
Yu, Xuechun ;
Zhang, Jin ;
Choi, WonMook ;
Choi, Jae-Young ;
Kim, Jong Min ;
Gan, Liangbing ;
Liu, Zhongfan .
NANO LETTERS, 2010, 10 (09) :3343-3349