Phase transitions in driven diffusive systems with random rates

被引:122
作者
Krug, J [1 ]
Ferrari, PA [1 ]
机构
[1] UNIV SAO PAULO, INST MATEMAT & ESTATISTICA, BR-05389970 SAO PAULO, BRAZIL
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 18期
关键词
D O I
10.1088/0305-4470/29/18/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a one-dimensional driven lattice gas model in which quenched random jump rates are associated with the particles. Under suitable conditions on the distribution of jump rates the model displays a phase transition from a high-density 'laminar' phase with product measure to a low-density 'jammed' phase in which the interparticle spacings have no stationary distribution. Using a waiting time representation the phase transition is shown to be equivalent to a pinning transition of directed polymers with columnar defects. The phenomenon is argued to have a natural realization in traffic flow.
引用
收藏
页码:L465 / L471
页数:7
相关论文
共 30 条
[21]  
MALLICK K, UNPUB
[22]   BUNCHING OF CARS IN ASYMMETRIC EXCLUSION MODELS FOR FREEWAY TRAFFIC [J].
NAGATANI, T .
PHYSICAL REVIEW E, 1995, 51 (02) :922-928
[23]   Particle hopping models and traffic flow theory [J].
Nagel, K .
PHYSICAL REVIEW E, 1996, 53 (05) :4655-4672
[24]   NON-EQUILIBRIUM BEHAVIOR OF A MANY-PARTICLE PROCESS - DENSITY PROFILE AND LOCAL EQUILIBRIA [J].
ROST, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 58 (01) :41-53
[25]   DISCRETE STOCHASTIC-MODELS FOR TRAFFIC FLOW [J].
SCHRECKENBERG, M ;
SCHADSCHNEIDER, A ;
NAGEL, K ;
ITO, N .
PHYSICAL REVIEW E, 1995, 51 (04) :2939-2949
[26]   INTERACTION OF MARKOV PROCESSES [J].
SPITZER, F .
ADVANCES IN MATHEMATICS, 1970, 5 (02) :246-&
[27]  
Spohn H., 2012, Large scale dynamics of interacting particles
[28]  
TANG LH, 1992, GROWTH PATTERNS PHYS
[29]   EXCESS NOISE FOR DRIVEN DIFFUSIVE SYSTEMS [J].
VANBEIJEREN, H ;
KUTNER, R ;
SPOHN, H .
PHYSICAL REVIEW LETTERS, 1985, 54 (18) :2026-2029
[30]   INHOMOGENEOUS GROWTH-PROCESSES [J].
WOLF, DE ;
TANG, LH .
PHYSICAL REVIEW LETTERS, 1990, 65 (13) :1591-1594