An evaluation of gating window size, delivery method, and composite field dosimetry of respiratory-gated IMRT

被引:61
作者
Hugo, GD [1 ]
Agazaryan, N [1 ]
Solberg, TD [1 ]
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Radiat Oncol, Los Angeles, CA 90095 USA
关键词
radiotherapy; intensity modulated radiotherapy; IMRT; respiratory gating; gated dosimetry;
D O I
10.1118/1.1514578
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A respiratory gating system has been developed based on a commercial patient positioning system. The purpose of this study is to investigate the ability of the gating system to reproduce normal, nongated IMRT operation and to quantify the errors produced by delivering a nongated IMRT treatment onto a moving target. A moving phantom capable of simultaneous two-dimensional motion was built, and an analytical liver motion function was used to drive the phantom. Studies were performed to assess the effect of gating window size and choice of delivery method (segmented and dynamic multileaf collimation). Additionally, two multiple field IMRT cases were delivered to quantify the error in gated and nongated IMRT with motion. Dosimetric error between nonmoving and moving deliveries is related to gating window size. By reducing the window size, the error can be reduced. Delivery error can be reduced for both dynamic and segmented delivery with gating. For the implementation of dynamic IMRT delivery in this study, dynamic delivery was found to generate larger delivery errors than segmented delivery in most cases studied. For multiple field IMRT delivery, the largest errors were generated in regions where high field modulation was present parallel to the axis of motion. Gating was found to reduce these large errors to clinically acceptable levels. (C) 2002 American Association of Physicists in Medicine.
引用
收藏
页码:2517 / 2525
页数:9
相关论文
共 19 条
[1]  
AGAZARYAN N, 2001, THESIS
[2]   Determination of ventilatory liver movement via radiographic evaluation of diaphragm position [J].
Balter, JM ;
Dawson, LA ;
Kazanjian, S ;
McGinn, C ;
Brock, KK ;
Lawrence, T ;
Ten Haken, R .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (01) :267-270
[3]   Real-time three-dimensional motion analysis for patient positioning verification [J].
Baroni, G ;
Ferrigno, G ;
Orecchia, R ;
Pedotti, A .
RADIOTHERAPY AND ONCOLOGY, 2000, 54 (01) :21-27
[4]  
Chao KSC, 2000, INT J CANCER, V90, P92, DOI 10.1002/(SICI)1097-0215(20000420)90:2<92::AID-IJC5>3.0.CO
[5]  
2-9
[6]   A software toes for the quantitative evaluation of 3D dose calculation algorithms [J].
Harms, WB ;
Low, DA ;
Wong, JW ;
Purdy, JA .
MEDICAL PHYSICS, 1998, 25 (10) :1830-1836
[7]  
HUGO G, 2001, MED PHYS, V28, P1294
[8]   Treatment planning and delivery of intensity-modulated radiation therapy for primary nasopharynx cancer [J].
Hunt, MA ;
Zelefsky, MJ ;
Wolden, S ;
Chui, CS ;
LoSasso, T ;
Rosenzweig, K ;
Chong, L ;
Spirou, SV ;
Fromme, L ;
Lumley, M ;
Amols, HA ;
Ling, CL ;
Leibel, SA .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 49 (03) :623-632
[9]   Motion adaptive x-ray therapy: a feasibility study [J].
Keall, PJ ;
Kini, VR ;
Vedam, SS ;
Mohan, R .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (01) :1-10
[10]   Compatibility of Varian 2100C gated operations with enhanced dynamic wedge and IMRT dose delivery [J].
Kubo, HD ;
Wang, LL .
MEDICAL PHYSICS, 2000, 27 (08) :1732-1738