Graphene Glass: Direct Growth of Graphene on Traditional Glasses

被引:32
作者
Chen Xu-Dong [1 ]
Chen Zhao-Long [1 ]
Sun Jing-Yu [1 ]
Zhang Yan-Feng [1 ,2 ]
Liu Zhong-Fan [1 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Ctr NanoChem, Beijing 100871, Peoples R China
[2] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; Solid-state glass; Molten glass; Chemical vapor deposition; Plasma enhanced; CHEMICAL-VAPOR-DEPOSITION; SINGLE-LAYER GRAPHENE; HIGH-QUALITY; TRANSPARENT; FILMS; TRANSPORT; ENERGY; FOILS;
D O I
10.3866/PKU.WHXB201511133
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Glass, an amorphous oxide material with a long history, is widely used in our daily life. Graphene is a novel two-dimensional material formed by carbon atoms. The unique properties of graphene, such as excellent mechanical strength, high electrical and thermal conductivity and optical transparency, serve as complementary components to those of glass. Therefore, the combination of graphene and glass would endow noticeable electrical/thermal conductivity and surface hydrophobicity without sacrificing the transparency of conventional glass. Previously reported routes for integrating graphene with glass mainly used solution-casting of liquid-exfoliated graphene nanoplatelets and transfer-coating of graphene films grown on metals. Compared with the existing methods, the direct growth of graphene on glass could avoid contamination and damage during the integration process, thereby resulting in good graphene quality and scalability, high thickness/ coverage uniformity, much reduced breakage density, and a tight and clean interface with the underlying glass. In this article,.we review our recent progress on the direct growth of graphene on various glass by chemical vapor deposition (CVD). With the consideration of the thermo-stabilities of glass and application requirements, three different CVD routes are developed, i.e., high-temperature, atmospheric pressure CVD on solid-state thermostable glass and molten-state glass, as well as low-temperature plasma enhanced CVD on solid-state soda-lime floating glass. We also explore the practical applications of the as-grown graphene glass, where electrochromic windows, defoggers, cell proliferation, and photocatalytic plates were fabricated based on our CVD-grown graphene glass. The high performance of these devices promises practical usage of graphene glass in daily-life applications.
引用
收藏
页码:14 / 27
页数:14
相关论文
共 69 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[2]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[4]   Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation [J].
Chae, Seung Jin ;
Guenes, Fethullah ;
Kim, Ki Kang ;
Kim, Eun Sung ;
Han, Gang Hee ;
Kim, Soo Min ;
Shin, Hyeon-Jin ;
Yoon, Seon-Mi ;
Choi, Jae-Young ;
Park, Min Ho ;
Yang, Cheol Woong ;
Pribat, Didier ;
Lee, Young Hee .
ADVANCED MATERIALS, 2009, 21 (22) :2328-+
[5]   Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications [J].
Chang, Haixin ;
Wu, Hongkai .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (12) :3483-3507
[6]   Near-Equilibrium Chemical Vapor Deposition of High-Quality Single-Crystal Graphene Directly on Various Dielectric Substrates [J].
Chen, Jianyi ;
Guo, Yunlong ;
Jiang, Lili ;
Xu, Zhiping ;
Huang, Liping ;
Xue, Yunzhou ;
Geng, Dechao ;
Wu, Bin ;
Hu, Wenping ;
Yu, Gui ;
Liu, Yunqi .
ADVANCED MATERIALS, 2014, 26 (09) :1348-1353
[7]   Oxygen-Aided Synthesis of Polycrystalline Graphene on Silicon Dioxide Substrates [J].
Chen, Jianyi ;
Wen, Yugeng ;
Guo, Yunlong ;
Wu, Bin ;
Huang, Liping ;
Xue, Yunzhou ;
Geng, Dechao ;
Wang, Dong ;
Yu, Gui ;
Liu, Yunqi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (44) :17548-17551
[8]   Synthesis of Graphene on Dielectric Substrates [J].
Chen Jisi ;
Wu Bin ;
Liu Yunqi .
ACTA CHIMICA SINICA, 2014, 72 (03) :359-366
[9]   Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture [J].
Chen, Yubin ;
Sun, Jingyu ;
Gao, Junfeng ;
Du, Feng ;
Han, Qi ;
Nie, Yufeng ;
Chen, Zhaolong ;
Bachmatiuk, Alicja ;
Priydarshi, Manish Kr. ;
Ma, Donglin ;
Song, Xiuju ;
Wu, Xiaosong ;
Xiong, Chunyang ;
Ruemmeli, Mark H. ;
Ding, Feng ;
Zhang, Yanfeng ;
Liu, Zhongfan .
ADVANCED MATERIALS, 2015, 27 (47) :7839-7846
[10]   Structural coherency of graphene on Ir(111) [J].
Coraux, Johann ;
N'Diaye, Alpha T. ;
Busse, Carsten ;
Michely, Thomas .
NANO LETTERS, 2008, 8 (02) :565-570