Implementation of an imprint damascene process for interconnect fabrication

被引:70
作者
Schmid, Gerard M.
Stewart, Michael D.
Wetzel, Jeffrey
Palmieri, Frank
Hao, Jianjun
Nishimura, Yukio
Jen, Kane
Kim, Eui Kyoon
Resnick, Douglas J.
Liddle, J. Alexander
Willson, C. Grant [1 ]
机构
[1] Univ Texas, Dept Chem Engn, Austin, TX 78712 USA
[2] Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA
[3] Mol Imprints Inc, Austin, TX 78758 USA
[4] Adv Technol Dev Facil Inc, Austin, TX 78712 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2006年 / 24卷 / 03期
关键词
D O I
10.1116/1.2197508
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Advanced integrated circuits require eight or more levels of wiring to transmit electrical signal and power among devices and to external circuitry. Each wiring level connects to the levels above and below it through via layers. The dual damascene approach to fabricating these interconnected structures creates a wiring level and a via level simultaneously, thereby reducing the total number of processing steps. However, the dual damascene strategy (of which there are several variations) still requires around 20 process steps per wiring layer. In this work, an approach to damascene processing that is based on step-and-flash imprint lithography (SFIL) is discussed. This imprint damascene process requires fewer than half as many steps as the standard photolithographic dual damascene approach. Through use of a template with two tiers of patterning, a single imprint lithography step can replace two photolithography steps. Further improvements in efficiency are possible if the imprint material is itself a functional dielectric material. This work is a demonstration of the compatibility of imprint lithography (specifically SFIL) with back-end-of-line processing using a dual damascene approach with functional materials. (c) 2006 American Vacuum Society.
引用
收藏
页码:1283 / 1291
页数:9
相关论文
共 15 条
[1]   Step and flash imprint lithography: A new approach to high-resolution patterning [J].
Colburn, M ;
Johnson, S ;
Stewart, M ;
Damle, S ;
Bailey, T ;
Choi, B ;
Wedlake, M ;
Michaelson, T ;
Sreenivasan, SV ;
Ekerdt, J ;
Willson, CG .
EMERGING LITHOGRAPHIC TECHNOLOGIES III, PTS 1 AND 2, 1999, 3676 :379-389
[2]  
Hedrick JL, 1998, ADV MATER, V10, P1049, DOI 10.1002/(SICI)1521-4095(199809)10:13<1049::AID-ADMA1049>3.0.CO
[3]  
2-F
[4]   Fabrication of multi-tiered structures on step and flash imprint lithography templates [J].
Johnson, S ;
Resnick, DJ ;
Mancini, D ;
Nordquist, K ;
Dauksher, WJ ;
Gehoski, K ;
Baker, JH ;
Dues, L ;
Hooper, A ;
Bailey, TC ;
Sreenivasan, SV ;
Ekerdt, JG ;
Willson, CG .
MICROELECTRONIC ENGINEERING, 2003, 67-8 :221-228
[5]  
KONDO S, 2003, P ULSI, V17, P537
[6]   Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography [J].
Li, MT ;
Wang, JA ;
Zhuang, L ;
Chou, SY .
APPLIED PHYSICS LETTERS, 2000, 76 (06) :673-675
[7]   Step and repeat UV nanoimprint lithography tools and processes [J].
McMackin, I ;
Choi, J ;
Schumaker, P ;
Nguyen, V ;
Xu, F ;
Thompson, E ;
Babbs, D ;
Sreenivasan, SV ;
Watts, M ;
Schumaker, N .
EMERGING LITHOGRAPHIC TECHNOLOGIES VIII, 2004, 5374 :222-231
[8]   Design and performance of a step and repeat imprinting machine [J].
McMackin, I ;
Schumaker, P ;
Babbs, D ;
Choi, J ;
Collison, W ;
Sreenivasan, SV ;
Schumaker, N ;
Watts, M ;
Voisin, R .
EMERGING LITHOGRAPHIC TECHNOLOGIES VII, PTS 1 AND 2, 2003, 5037 :178-186
[9]   Low dielectric constant materials for ULSI interconnects [J].
Morgen, M ;
Ryan, ET ;
Zhao, JH ;
Hu, C ;
Cho, TH ;
Ho, PS .
ANNUAL REVIEW OF MATERIALS SCIENCE, 2000, 30 :645-680
[10]   Imprint lithography for integrated circuit fabrication [J].
Resnick, DJ ;
Dauksher, WJ ;
Mancini, D ;
Nordquist, KJ ;
Bailey, TC ;
Johnson, S ;
Stacey, N ;
Ekerdt, JG ;
Willson, CG ;
Sreenivasan, SV ;
Schumaker, N .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (06) :2624-2631