Some inertia theorems in Euclidean Jordan algebras

被引:30
作者
Gowda, M. Seetharama [1 ]
Tao, Jiyuan [2 ]
Moldovan, Melania [1 ]
机构
[1] Univ Maryland, Dept Math & Stat, Baltimore, MD 21250 USA
[2] Loyola Coll, Dept Math Sci, Baltimore, MD 21210 USA
关键词
Euclidean Jordan algebra; Inertia; Sylvester's law of inertia; Lyapunov transformation; Quadratic representation; Cone spectrum; Ostrowski-Schneider inertia theorem; LINEAR TRANSFORMATIONS; SYLVESTERS LAW; P-PROPERTIES; CONES;
D O I
10.1016/j.laa.2008.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with some inertia theorems in Euclidean Jordan algebras. First, based on the continuity of eigenvalues, we give an alternate proof of Kaneyuki's generalization of Sylvester's law of inertia in simple Euclidean Jordan algebras. As a consequence, we show that the cone spectrum of any quadratic representation with respect to a symmetric cone is finite. Second, we present Ostrowski-Schneider type inertia results in Euclidean Jordan algebras. In particular, we relate the inertias of objects a and x in a Euclidean Jordan algebra when L-a(x) > 0 or S-a(x) > 0, where L-a and S-a denote Lyapunov and Stein transformations, respectively. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1992 / 2011
页数:20
相关论文
共 29 条
[1]   Convexity and differentiability properties of spectral functions and spectral mappings on Euclidean Jordan algebras [J].
Baes, Michel .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) :664-700
[2]  
BHATIA R, 1997, MATRIX ANAL SPRINGER
[3]  
Carlson D., 1963, J MATH ANAL APPL, V6, P430, DOI DOI 10.1016/0022-247X(63)90023-4
[4]   Positive groups on Hn are completely positive [J].
Damm, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 :127-137
[5]   Stability and inertia [J].
Datta, BN .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 303 :563-600
[6]  
Faraut J., 1994, ANAL SYMMETRIC CONES
[7]   Z-transformations on proper and symmetric cones - Z-transformations [J].
Gowda, M. Seetharama ;
Tao, Jiyuan .
MATHEMATICAL PROGRAMMING, 2009, 117 (1-2) :195-221
[8]   Some global uniqueness and solvability results for linear complementarity problems over symmetric cones [J].
Gowda, M. Seetharama ;
Sznajder, R. .
SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (02) :461-481
[9]   Automorphism invariance of P- and GUS-properties of linear transformations on Euclidean Jordan algebras [J].
Gowda, MS ;
Sznajder, R .
MATHEMATICS OF OPERATIONS RESEARCH, 2006, 31 (01) :109-123
[10]   Some P-properties for linear transformations on Euclidean Jordan algebras [J].
Gowda, MS ;
Sznajder, R ;
Tao, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 :203-232