Bimolecular recombination in ambipolar organic field effect transistors

被引:16
作者
Charrier, D. S. H. [1 ]
de Vries, T. [2 ]
Mathijssen, S. G. J. [1 ,3 ]
Geluk, E. -J. [2 ]
Smits, E. C. P. [3 ,4 ]
Kemerink, M. [1 ]
Janssen, R. A. J. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, COBRA Res Inst, NL-5600 MB Eindhoven, Netherlands
[3] Philips Res Labs, NL-5656 AE Eindhoven, Netherlands
[4] Univ Groningen, Zernike Inst Adv Mat, NL-9700 AB Groningen, Netherlands
关键词
Bimolecular recombination; Organic field effect transistor; Scanning Kelvin probe microscopy; Deconvolution; KELVIN PROBE MICROSCOPY; FORCE MICROSCOPY; RESOLUTION;
D O I
10.1016/j.orgel.2009.03.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In ambipolar organic field effect transistors (OFET) the shape of the channel potential is intimately related to the recombination zone width W, and hence to the electron-hole recombination strength. Experimentally, the recombination profile can be assessed by scanning Kelvin probe microscopy (SKPM). However, surface potentials as measured by SKPM are distorted due to spurious capacitive couplings. Here, we present a (de)convolution method with an experimentally calibrated transfer function to reconstruct the actual surface potential from a measured SKPM response and vice versa. Using this scheme, we find W = 0.5 mu m for a nickel dithiolene OFET, which translates into a recombination rate that is two orders of magnitude below the value expected for Langevin recombination. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:994 / 997
页数:4
相关论文
共 18 条
[1]  
Brigham EO., 1988, FAST FOURIER TRANSFO
[2]   Real versus measured surface potentials in scanning Kelvin probe microscopy [J].
Charrier, Dimitri S. H. ;
Kemerink, Martijn ;
Smalbrugge, Barry E. ;
de Vries, Tjibbe ;
Janssen, Rene A. J. .
ACS NANO, 2008, 2 (04) :622-626
[3]   Electrostatic force gradient signal:: resolution enhancement in electrostatic force microscopy and improved Kelvin probe microscopy [J].
Gil, A ;
Colchero, J ;
Gómez-Herrero, J ;
Baró, AM .
NANOTECHNOLOGY, 2003, 14 (02) :332-340
[4]   Bimolecular recombination in polymer electronic devices [J].
Groves, C. ;
Greenham, N. C. .
PHYSICAL REVIEW B, 2008, 78 (15)
[5]   Resolution and contrast in Kelvin probe force microscopy [J].
Jacobs, HO ;
Leuchtmann, P ;
Homan, OJ ;
Stemmer, A .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (03) :1168-1173
[6]   On the width of the recombination zone in ambipolar organic field effect transistors [J].
Kemerink, M. ;
Charrier, D. S. H. ;
Smits, E. C. P. ;
Mathijssen, S. G. J. ;
de Leeuw, D. M. ;
Janssen, R. A. J. .
APPLIED PHYSICS LETTERS, 2008, 93 (03)
[7]   Probing local surface potential of quasi-one-dimensional systems:: A KPFM study of P3HT nanofibers [J].
Liscio, Andrea ;
Palermo, Vincenzo ;
Samori, Paolo .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (06) :907-914
[8]   A gate dielectric that enables high ambipolar mobilities in polymer light-emitting field-effect transistors [J].
Naber, R. C. G. ;
Bird, M. ;
Sirringhaus, H. .
APPLIED PHYSICS LETTERS, 2008, 93 (02)
[9]   Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers [J].
Namdas, Ebinazor B. ;
Tong, Minghong ;
Ledochowitsch, Peter ;
Mednick, Sarah R. ;
Yuen, Jonathan D. ;
Moses, Daniel ;
Heeger, Alan J. .
ADVANCED MATERIALS, 2009, 21 (07) :799-+
[10]   KELVIN PROBE FORCE MICROSCOPY [J].
NONNENMACHER, M ;
OBOYLE, MP ;
WICKRAMASINGHE, HK .
APPLIED PHYSICS LETTERS, 1991, 58 (25) :2921-2923