Metal-organic framework composites

被引:2007
作者
Zhu, Qi-Long [1 ]
Xu, Qiang [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Ikeda, Osaka 5638577, Japan
关键词
POROUS COORDINATION POLYMERS; MESOPOROUS SILICA NANOPARTICLES; ORGANOMETALLIC CVD-PRECURSORS; SHELL MAGNETIC MICROSPHERES; GRAPHITE OXIDE COMPOSITES; ENHANCED HYDROGEN STORAGE; HIGHLY-ACTIVE CATALYSTS; WALLED CARBON NANOTUBES; SOLID-PHASE EXTRACTION; HIGH-SURFACE-AREA;
D O I
10.1039/c3cs60472a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-organic frameworks (MOFs), also known as porous coordination polymers (PCPs), synthesized by assembling metal ions with organic ligands have recently emerged as a new class of crystalline porous materials. The amenability to design as well as fine-tunable and uniform pore structures makes them promising materials for a variety of applications. Controllable integration of MOFs and functional materials is leading to the creation of new multifunctional composites/hybrids, which exhibit new properties that are superior to those of the individual components through the collective behavior of the functional units. This is a rapidly developing interdisciplinary research area. This review provides an overview of the significant advances in the development of diverse MOF composites reported till now with special emphases on the synergistic effects and applications of the composites. The most widely used and successful strategies for composite synthesis are also presented.
引用
收藏
页码:5468 / 5512
页数:45
相关论文
共 419 条
[41]   How Can Proteins Enter the Interior of a MOF? Investigation of Cytochrome c Translocation into a MOF Consisting of Mesoporous Cages with Microporous Windows [J].
Chen, Yao ;
Lykourinou, Vasiliki ;
Vetromile, Carissa ;
Tran Hoang ;
Ming, Li-June ;
Larsen, Randy W. ;
Ma, Shengqian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (32) :13188-13191
[42]   Multifunctional fourfold interpenetrating diamondoid network: Gas separation and fabrication of palladium nanoparticles [J].
Cheon, Young Eun ;
Suh, Myunghyun Paik .
CHEMISTRY-A EUROPEAN JOURNAL, 2008, 14 (13) :3961-3967
[43]   Enhanced Hydrogen Storage by Palladium Nanoparticles Fabricated in a Redox-Active Metal-Organic Framework [J].
Cheon, Young Eun ;
Suh, Myunghyun Paik .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (16) :2899-2903
[44]   A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J].
Chui, SSY ;
Lo, SMF ;
Charmant, JPH ;
Orpen, AG ;
Williams, ID .
SCIENCE, 1999, 283 (5405) :1148-1150
[45]   Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks [J].
Cohen, Seth M. .
CHEMICAL REVIEWS, 2012, 112 (02) :970-1000
[46]   Luminescent Functional Metal-Organic Frameworks [J].
Cui, Yuanjing ;
Yue, Yanfeng ;
Qian, Guodong ;
Chen, Banglin .
CHEMICAL REVIEWS, 2012, 112 (02) :1126-1162
[47]   Rationalization of the entrapping of bioactive molecules into a series of functionalized porous zirconium terephthalate MOFs [J].
Cunha, D. ;
Gaudin, C. ;
Colinet, I. ;
Horcajada, P. ;
Maurin, G. ;
Serre, C. .
JOURNAL OF MATERIALS CHEMISTRY B, 2013, 1 (08) :1101-1108
[48]   Hydrogen storage: beyond conventional methods [J].
Dalebrook, Andrew F. ;
Gan, Weijia ;
Grasemann, Martin ;
Moret, Severine ;
Laurenczy, Gabor .
CHEMICAL COMMUNICATIONS, 2013, 49 (78) :8735-8751
[49]   From tectons to composite crystals [J].
Dechambenoit, P ;
Ferlay, S ;
Hosseini, MW .
CRYSTAL GROWTH & DESIGN, 2005, 5 (06) :2310-2312
[50]   Metal-Organic Framework Templated Synthesis of Fe2O3/TiO2 Nanocomposite for Hydrogen Production [J].
deKrafft, Kathryn E. ;
Wang, Cheng ;
Lin, Wenbin .
ADVANCED MATERIALS, 2012, 24 (15) :2014-2018