Rapid detection and profiling of cancer cells in fine-needle aspirates

被引:143
作者
Lee, Hakho [1 ]
Yoon, Tae-Jong [1 ]
Figueiredo, Jose-Luiz [1 ]
Swirski, Filip K. [1 ]
Weissleder, Ralph [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Ctr Syst Biol, Boston, MA 02114 USA
[2] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
关键词
microfluidics; nanoparticle; nuclear magnetic resonance; MAGNETIC-RESONANCE; TUMOR-CELLS; NANOPARTICLES; PROTEIN; DIAGNOSIS; SURFACE; SENSOR; NANOCRYSTALS; MACROPHAGES; TECHNOLOGY;
D O I
10.1073/pnas.0902365106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is a growing need for fast, highly sensitive and quantitative technologies to detect and profile unaltered cells in biological samples. Technologies in current clinical use are often time consuming, expensive, or require considerable sample sizes. Here, we report a diagnostic magnetic resonance (DMR) sensor that combines a miniaturized NMR probe with targeted magnetic nanoparticles for detection and molecular profiling of cancer cells. The sensor measures the transverse relaxation rate of water molecules in biological samples in which target cells of interest are labeled with magnetic nanoparticles. We achieved remarkable sensitivity improvements over our prior DMR prototypes by synthesizing new nanoparticles with higher transverse relaxivity and by optimizing assay protocols. Wedetected as few as 2 cancer cells in 1-mu L sample volumes of unprocessed fine-needle aspirates of tumors and profiled the expression of several cellular markers in <15 min.
引用
收藏
页码:12459 / 12464
页数:6
相关论文
共 38 条
[1]   A biosensor based on magnetoresistance technology [J].
Baselt, DR ;
Lee, GU ;
Natesan, M ;
Metzger, SW ;
Sheehan, PE ;
Colton, RJ .
BIOSENSORS & BIOELECTRONICS, 1998, 13 (7-8) :731-739
[2]   Detection of a single magnetic microbead using a miniaturized silicon Hall sensor [J].
Besse, PA ;
Boero, G ;
Demierre, M ;
Pott, V ;
Popovic, R .
APPLIED PHYSICS LETTERS, 2002, 80 (22) :4199-4201
[3]   On T2-shortening by weakly magnetized particles:: The chemical exchange model [J].
Brooks, RA ;
Moiny, F ;
Gillis, P .
MAGNETIC RESONANCE IN MEDICINE, 2001, 45 (06) :1014-1020
[4]  
Buley ID, 2000, CLIN ONCOL-UK, V12, P166, DOI 10.1007/s001740070060
[5]   Nanotechnologies for biomolecular detection and medical diagnostics [J].
Cheng, MMC ;
Cuda, G ;
Bunimovich, YL ;
Gaspari, M ;
Heath, JR ;
Hill, HD ;
Mirkin, CA ;
Nijdam, AJ ;
Terracciano, R ;
Thundat, T ;
Ferrari, M .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2006, 10 (01) :11-19
[6]   Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes [J].
Chithrani, B. Devika ;
Chan, Warren C. W. .
NANO LETTERS, 2007, 7 (06) :1542-1550
[7]   Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture [J].
Durr, E ;
Yu, JY ;
Krasinska, KM ;
Carver, LA ;
Yates, JR ;
Testa, JE ;
Oh, P ;
Schnitzer, JE .
NATURE BIOTECHNOLOGY, 2004, 22 (08) :985-992
[8]   Planar Hall effect sensor for magnetic micro- and nanobead detection [J].
Ejsing, L ;
Hansen, MF ;
Menon, AK ;
Ferreira, HA ;
Graham, DL ;
Freitas, PP .
APPLIED PHYSICS LETTERS, 2004, 84 (23) :4729-4731
[9]   The case for early detection [J].
Etzioni, R ;
Urban, N ;
Ramsey, S ;
McIntosh, M ;
Schwartz, S ;
Reid, B ;
Radich, J ;
Anderson, G ;
Hartwell, L .
NATURE REVIEWS CANCER, 2003, 3 (04) :243-252
[10]   Detection of bacteria in suspension by using a superconducting quantum interference device [J].
Grossman, HL ;
Myers, WR ;
Vreeland, VJ ;
Bruehl, R ;
Alper, MD ;
Bertozzi, CR ;
Clarke, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (01) :129-134