Exceptional ballistic transport in epitaxial graphene nanoribbons

被引:493
作者
Baringhaus, Jens [1 ]
Ruan, Ming [2 ]
Edler, Frederik [1 ]
Tejeda, Antonio [3 ,4 ]
Sicot, Muriel [3 ]
Taleb-Ibrahimi, Amina [4 ]
Li, An-Ping [5 ]
Jiang, Zhigang [2 ]
Conrad, Edward H. [2 ]
Berger, Claire [2 ,6 ]
Tegenkamp, Christoph [1 ]
de Heer, Walt A. [2 ]
机构
[1] Leibniz Univ Hannover, Inst Festkorperphys, D-30167 Hannover, Germany
[2] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[3] Univ Lorraine, UMR CNRS 7198, Inst Jean Lamour, F-54506 Vandoeuvre Les Nancy, France
[4] UR1 CNRS Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France
[5] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[6] CNRS UJF INP, Inst Neel, F-38042 Grenoble 6, France
关键词
QUANTUM; CONFINEMENT;
D O I
10.1038/nature12952
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene nanoribbons will be essential components in future graphene nanoelectronics(1). However, in typical nanoribbons produced from lithographically patterned exfoliated graphene, the charge carriers travel only about ten nanometres between scattering events, resulting in minimum sheet resistances of about one kilohm per square(2-5). Here we show that 40-nanometre-wide graphene nanoribbons epitaxially grown on silicon carbide(6,7) are single-channel room-temperature ballistic conductors on a length scale greater than ten micrometres, which is similar to the performance of metallic carbon nanotubes. This is equivalent to sheet resistances below 1 ohm per square, surpassing theoretical predictions for perfect graphene(8) by at least an order of magnitude. In neutral graphene ribbons, we show that transport is dominated by two modes. One is ballistic and temperature independent; the other is thermally activated. Transport is protected from back-scattering, possibly reflecting ground-state properties of neutral graphene. At room temperature, the resistance of both modes is found to increase abruptly at a particular length-the ballistic mode at 16 micrometres and the other at 160 nanometres. Our epitaxial graphene nanoribbons will be important not only in fundamental science, but also-because they can be readily produced in thousands-in advanced nanoelectronics, which can make use of their room-temperature ballistic transport properties.
引用
收藏
页码:349 / 354
页数:6
相关论文
共 30 条
[1]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   4-TERMINAL PHASE-COHERENT CONDUCTANCE [J].
BUTTIKER, M .
PHYSICAL REVIEW LETTERS, 1986, 57 (14) :1761-1764
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[6]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[7]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470
[8]  
Datta S., 1997, Electronic transport in mesoscopic systems, DOI DOI 10.1063/1.2807624
[9]   Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide [J].
de Heer, Walt A. ;
Berger, Claire ;
Ruan, Ming ;
Sprinkle, Mike ;
Li, Xuebin ;
Hu, Yike ;
Zhang, Baiqian ;
Hankinson, John ;
Conrad, Edward .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (41) :16900-16905
[10]   Four-terminal resistance of a ballistic quantum wire [J].
de Picciotto, R ;
Stormer, HL ;
Pfeiffer, LN ;
Baldwin, KW ;
West, KW .
NATURE, 2001, 411 (6833) :51-54