Computational identification of novel microRNA homologs in the chimpanzee genome

被引:31
作者
Baev, Vesselin [1 ]
Daskalova, Evelina [1 ]
Minkov, Ivan [1 ]
机构
[1] Paisij Hilendarski Univ Plovdiv, Dept Mol Biol & Plant Physiol, BG-4000 Plovdiv, Bulgaria
关键词
miRNA; Pan troglodytes; Orthologs; Bioinformatics; TRANSCRIPTION FACTORS; C-ELEGANS; RNAS; EVOLUTION; GENES; PREDICTION; MIRNAS; SERVER;
D O I
10.1016/j.compbiolchem.2008.07.024
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
MicroRNAs are important negative regulators of gene expression in higher eukaryotes. The miRNA repertoire of the closest human animal relative, the chimpanzee (Pan troglodytes), is largely unknown. In this study, we focused on computational search of novel miRNA homologs in chimpanzee. We have searched and analyzed the chimp homologs of the human pre-miRNA and mature miRNA sequences. Based on a homology search of the chimpanzee genome with human miRNA precursor sequences as queries, we identified 639 chimp miRNA genes, including 529 novel chimp miRNAs. 91.8% of chimp mature miRNAs and 60.3% of precursors are 100% identical to their human orthologs. The pre-miRNA secondary structures, miRNA families, and clusters are also highly conserved. We also found certain sequence differences in pre-miRNAs and even mature miRNAs that occurred after the divergence of the two species. Some of these differences (especially in mature miRNAs) could have caused species-specific changes in the expression levels of their target genes which in turn could have resulted in phenotypic variation between human and chimp. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:62 / 70
页数:9
相关论文
共 34 条
[1]   Clustering and conservation patterns of human microRNAs [J].
Altuvia, Y ;
Landgraf, P ;
Lithwick, G ;
Elefant, N ;
Pfeffer, S ;
Aravin, A ;
Brownstein, MJ ;
Tuschl, T ;
Margalit, H .
NUCLEIC ACIDS RESEARCH, 2005, 33 (08) :2697-2706
[2]   MicroRNAs and other tiny endogenous RNAs in C-elegans [J].
Ambros, V ;
Lee, RC ;
Lavanway, A ;
Williams, PT ;
Jewell, D .
CURRENT BIOLOGY, 2003, 13 (10) :807-818
[3]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]   Phylogenetic shadowing and computational identification of human microRNA genes [J].
Berezikov, E ;
Guryev, V ;
van de Belt, J ;
Wienholds, E ;
Plasterk, RHA ;
Cuppen, E .
CELL, 2005, 120 (01) :21-24
[6]   Diversity of microRNAs in human and chimpanzee brain [J].
Berezikov, Eugene ;
Thuemmler, Fritz ;
van Laake, Linda W. ;
Kondova, Ivanela ;
Bontrop, Ronald ;
Cuppen, Edwin ;
Plasterk, Ronald H. A. .
NATURE GENETICS, 2006, 38 (12) :1375-1377
[7]   Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs [J].
Cai, XZ ;
Hagedorn, CH ;
Cullen, BR .
RNA, 2004, 10 (12) :1957-1966
[8]   The evolution of gene regulation by transcription factors and microRNAs [J].
Chen, Kevin ;
Rajewsky, Nikolaus .
NATURE REVIEWS GENETICS, 2007, 8 (02) :93-103
[9]   miR-15 and miR-16 induce apoptosis by targeting BCL2 [J].
Cimmino, A ;
Calin, GA ;
Fabbri, M ;
Iorio, MV ;
Ferracin, M ;
Shimizu, M ;
Wojcik, SE ;
Aqeilan, RI ;
Zupo, S ;
Dono, M ;
Rassenti, L ;
Alder, H ;
Volinia, S ;
Liu, CG ;
Kipps, TJ ;
Negrini, M ;
Croce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (39) :13944-13949
[10]   MicroRNAs and endocrine biology [J].
Cuellar, TL ;
McManus, MT .
JOURNAL OF ENDOCRINOLOGY, 2005, 187 (03) :327-332