Clustering and conservation patterns of human microRNAs

被引:624
作者
Altuvia, Y
Landgraf, P
Lithwick, G
Elefant, N
Pfeffer, S
Aravin, A
Brownstein, MJ
Tuschl, T
Margalit, H
机构
[1] Hebrew Univ Jerusalem, Fac Med, Dept Mol Genet & Biotechnol, IL-91120 Jerusalem, Israel
[2] Rockefeller Univ, Lab RNA Mol Biol, New York, NY 10021 USA
[3] NIMH, Genet Lab, NHGRI, NIH, Bethesda, MD 20892 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/nar/gki567
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) are ~22 nt-long non-coding RNA molecules, believed to play important roles in gene regulation. We present a comprehensive analysis of the conservation and clustering patterns of known miRNAs in human. We show that human miRNA gene clustering is significantly higher than expected at random. A total of 37% of the known human miRNA genes analyzed in this study appear in clusters of two or more with pairwise chromosomal distances of at most 3000 nt. Comparison of them iRNA sequences with their homologs in four other organisms reveals a typical conservation pattern, persistent throughout the clusters. Furthermore, we show enrichment in the typical conservation patterns and other miRNA-like properties in the vicinity of known miRNA genes, compared with random genomic regions. This may imply that additional, yet unknown, miRNAs reside in these regions, consistent with the current recognition that there are overlooked miRNAs. Indeed, by comparing our predictions with cloning results and with identified miRNA genes in other mammals, we corroborate the predictions of 18 additional human miRNA genes in the vicinity of the previously known ones. Our study raises the proportion of clustered human miRNAs that are <3000 nt apart to 42%. This suggests that the clustering of miRNA genes is higher than currently acknowledged, alluding to its evolutionary and functional implications.
引用
收藏
页码:2697 / 2706
页数:10
相关论文
共 38 条
[1]   A uniform system for microRNA annotation [J].
Ambros, V ;
Bartel, B ;
Bartel, DP ;
Burge, CB ;
Carrington, JC ;
Chen, XM ;
Dreyfuss, G ;
Eddy, SR ;
Griffiths-Jones, S ;
Marshall, M ;
Matzke, M ;
Ruvkun, G ;
Tuschl, T .
RNA, 2003, 9 (03) :277-279
[2]   MicroRNAs and other tiny endogenous RNAs in C-elegans [J].
Ambros, V ;
Lee, RC ;
Lavanway, A ;
Williams, PT ;
Jewell, D .
CURRENT BIOLOGY, 2003, 13 (10) :807-818
[3]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[4]   The small RNA profile during Drosophila melanogaster development [J].
Aravin, AA ;
Lagos-Quintana, M ;
Yalcin, A ;
Zavolan, M ;
Marks, D ;
Snyder, B ;
Gaasterland, T ;
Meyer, J ;
Tuschl, T .
DEVELOPMENTAL CELL, 2003, 5 (02) :337-350
[5]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[6]   Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis [J].
Bashirullah, A ;
Pasquinelli, AE ;
Kiger, AA ;
Perrimon, N ;
Ruvkun, G ;
Thummel, CS .
DEVELOPMENTAL BIOLOGY, 2003, 259 (01) :1-8
[7]   Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes [J].
Baskerville, S ;
Bartel, DP .
RNA, 2005, 11 (03) :241-247
[8]   Phylogenetic shadowing and computational identification of human microRNA genes [J].
Berezikov, E ;
Guryev, V ;
van de Belt, J ;
Wienholds, E ;
Plasterk, RHA ;
Cuppen, E .
CELL, 2005, 120 (01) :21-24
[9]   Transcription and processing of human microRNA precursors [J].
Cullen, BR .
MOLECULAR CELL, 2004, 16 (06) :861-865
[10]   The microRNA Registry [J].
Griffiths-Jones, S .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D109-D111