Multiwalled carbon nanotube films as small-sized temperature sensors

被引:102
作者
Di Bartolomeo, A. [1 ,2 ]
Sarno, M. [1 ,2 ,3 ]
Giubileo, F. [1 ,4 ]
Altavilla, C. [1 ,2 ,3 ]
Iemmo, L. [1 ]
Piano, S. [1 ]
Bobba, F. [1 ,2 ,4 ]
Longobardi, M. [1 ]
Scarfato, A.
Sannino, D. [1 ,2 ,3 ]
Cucolo, A. M. [1 ,2 ,4 ]
Ciambelli, P. [3 ,4 ]
机构
[1] Univ Salerno, Dept Phys, I-84081 Baronissi, SA, Italy
[2] Univ Salerno, Res Ctr Nanomat & Nanotechnol, NANO MATES, I-84081 Baronissi, SA, Italy
[3] Univ Salerno, Dept Chem & Food Engn, I-84084 Fisciano, SA, Italy
[4] CNR INFM Reg Lab SUPERMAT, I-84081 Baronissi, SA, Italy
关键词
carbon nanotubes; electrical conductivity transitions; electrical resistivity; nanofabrication; temperature sensors; thermistors; thin films; ELECTRICAL-CONDUCTIVITY; TRANSPORT; GROWTH;
D O I
10.1063/1.3093680
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present the fabrication of thick and dense carbon nanotube networks in the form of freestanding films (CNTFs) and the study of their electric resistance as a function of the temperature, from 4 to 420 K. A nonmetallic behavior with a monotonic R(T) and a temperature coefficient of resistance around -7x10(-4) K-1 is generally observed. A behavioral accordance of the CNTF conductance with the temperature measured by a solid-state thermistor (ZnNO, Si, or Pt) is demonstrated, suggesting the possibility of using CNTFs as temperature small-sized (freely scalable) sensors, besides being confirmed by a wide range of sensitivity, fast response, and good stability and durability. Concerning electric behavior, we also underline that a transition from nonmetal to metal slightly below 273 K has been rarely observed. A model involving regions of highly anisotropic metallic conduction separated by tunneling barrier regions can explain the nonmetallic to metallic crossover based on the competing mechanisms of the metallic resistance rise and the barrier resistance lowering.
引用
收藏
页数:6
相关论文
共 27 条
[1]   Electrical conductivity of multiwall carbon nanotubes thin films [J].
Astorga, HR ;
Mendoza, D .
OPTICAL MATERIALS, 2005, 27 (07) :1228-1230
[2]   Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements [J].
Bachtold, A ;
Henny, M ;
Terrier, C ;
Strunk, C ;
Schonenberger, C ;
Salvetat, JP ;
Bonard, JM ;
Forro, L .
APPLIED PHYSICS LETTERS, 1998, 73 (02) :274-276
[3]  
CIAMBELLI P, 2008, Patent No. 2008000022
[4]   Effects of alumina phases and process parameters on the multiwalled carbon nanotubes growth [J].
Ciambelli, Paolo ;
Sannino, Diana ;
Sarno, Maria ;
Leone, Caterina ;
Lafont, Ugo .
DIAMOND AND RELATED MATERIALS, 2007, 16 (4-7) :1144-1149
[5]   ALIGNED CARBON NANOTUBE FILMS - PRODUCTION AND OPTICAL AND ELECTRONIC-PROPERTIES [J].
DEHEER, WA ;
BACSA, WS ;
CHATELAIN, A ;
GERFIN, T ;
HUMPHREYBAKER, R ;
FORRO, L ;
UGARTE, D .
SCIENCE, 1995, 268 (5212) :845-847
[6]   Electrical conductivity of individual carbon nanotubes [J].
Ebbesen, TW ;
Lezec, HJ ;
Hiura, H ;
Bennett, JW ;
Ghaemi, HF ;
Thio, T .
NATURE, 1996, 382 (6586) :54-56
[7]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[8]   Metallic resistivity in crystalline ropes of single-wall carbon nanotubes [J].
Fischer, JE ;
Dai, H ;
Thess, A ;
Lee, R ;
Hanjani, NM ;
Dehaas, DL ;
Smalley, RE .
PHYSICAL REVIEW B, 1997, 55 (08) :R4921-R4924
[9]   Dielectrophoretic batch fabrication of bundled carbon nanotube thermal sensors [J].
Fung, CMKM ;
Wong, VTS ;
Chan, RHM ;
Li, WJ .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2004, 3 (03) :395-403
[10]   Electrical and thermal transport properties of magnetically aligned single walt carbon nanotube films [J].
Hone, J ;
Llaguno, MC ;
Nemes, NM ;
Johnson, AT ;
Fischer, JE ;
Walters, DA ;
Casavant, MJ ;
Schmidt, J ;
Smalley, RE .
APPLIED PHYSICS LETTERS, 2000, 77 (05) :666-668