Band-gap scaling of graphene nanohole superlattices

被引:117
作者
Liu, Wei [1 ,2 ]
Wang, Z. F. [2 ]
Shi, Q. W. [1 ]
Yang, Jinlong [1 ]
Liu, Feng [2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 23期
关键词
band structure; energy gap; graphene; semiconductor superlattices; tight-binding calculations; NANORIBBONS; ZIGZAG;
D O I
10.1103/PhysRevB.80.233405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on the tight-binding model, we investigate band structures of graphene nanohole (GNH) superlattices as a function of NH size and density. One common origin of band gaps for GNH superlattices with NHs of either armchair or zigzag edges is the quantum-confinement effect due to the periodic potential introduced by the NHs, which turns the semimetallic sheet into a direct-gap semiconductor. Additional band gaps also open for GNH superlattices with NHs of zigzag edges in a ferromagnetic ground state, arising from the staggered sublattice potential on the zigzag edges due to edge magnetization. Our calculations reveal a generic scaling relation that both types of band gaps increase linearly with the product of NH size and density.
引用
收藏
页数:4
相关论文
共 25 条
[1]  
Dresselhaus M. S., 1996, SCI FULLERENES CARBO
[2]   Magnetism in graphene nanoislands [J].
Fernandez-Rossier, J. ;
Palacios, J. J. .
PHYSICAL REVIEW LETTERS, 2007, 99 (17)
[3]   Electronic properties of graphene antidot lattices [J].
Furst, J. A. ;
Pedersen, J. G. ;
Flindt, C. ;
Mortensen, N. A. ;
Brandbyge, M. ;
Pedersen, T. G. ;
Jauho, A-P .
NEW JOURNAL OF PHYSICS, 2009, 11
[4]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[5]   Graphene at the Edge: Stability and Dynamics [J].
Girit, Caglar Oe ;
Meyer, Jannik C. ;
Erni, Rolf ;
Rossell, Marta D. ;
Kisielowski, C. ;
Yang, Li ;
Park, Cheol-Hwan ;
Crommie, M. F. ;
Cohen, Marvin L. ;
Louie, Steven G. ;
Zettl, A. .
SCIENCE, 2009, 323 (5922) :1705-1708
[6]   Graphene nanostrip digital memory device [J].
Gunlycke, Daniel ;
Areshkin, Denis A. ;
Li, Junwen ;
Mintmire, John W. ;
White, Carter T. .
NANO LETTERS, 2007, 7 (12) :3608-3611
[7]   Field effect on spin-polarized transport in graphene nanoribbons [J].
Guo, Jing ;
Gunlycke, D. ;
White, C. T. .
APPLIED PHYSICS LETTERS, 2008, 92 (16)
[8]   Half-metallic graphene nanodots: A comprehensive first-principles theoretical study [J].
Hod, Oded ;
Barone, Veronica ;
Scuseria, Gustavo E. .
PHYSICAL REVIEW B, 2008, 77 (03)
[9]   Suppression of spin polarization in graphene nanoribbons by edge defects and impurities [J].
Huang, Bing ;
Liu, Feng ;
Wu, Jian ;
Gu, Bing-Lin ;
Duan, Wenhui .
PHYSICAL REVIEW B, 2008, 77 (15)
[10]   Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons [J].
Jia, Xiaoting ;
Hofmann, Mario ;
Meunier, Vincent ;
Sumpter, Bobby G. ;
Campos-Delgado, Jessica ;
Romo-Herrera, Jose Manuel ;
Son, Hyungbin ;
Hsieh, Ya-Ping ;
Reina, Alfonso ;
Kong, Jing ;
Terrones, Mauricio ;
Dresselhaus, Mildred S. .
SCIENCE, 2009, 323 (5922) :1701-1705