Anomalous diffusion in a field of randomly distributed scatterers

被引:4
作者
Affan, H. [1 ]
Friedrich, R. [1 ]
Eule, S. [2 ]
机构
[1] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
[2] Max Planck Inst Dynam & Self Org, D-37073 Gottingen, Germany
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 01期
关键词
EQUATIONS; DYNAMICS;
D O I
10.1103/PhysRevE.80.011137
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the motion of particles which are scattered by randomly distributed obstacles. In between scattering events the particles move uniformly. The governing master equation is obtained by mapping the problem onto a master equation which was previously devised for the description of anomalous diffusion of particles with inertia [R. Friedrich et al., Phys. Rev. Lett. 96, 230601 (2006)]. We show that for a scale-free distance distribution of scatterers a time-fractional master equation arises. The corresponding diffusion equation which exhibits a power-law diffusion coefficient is solved in d dimensions via the method of subordination.
引用
收藏
页数:9
相关论文
共 25 条
[1]  
[Anonymous], 1970, An Introduction to Probability Theory and its Applications
[2]  
[Anonymous], 1994, Aspects and Applications of the Random Walk
[3]  
Balescu R., 2005, SER PLASMA PHYS
[4]   Fractional Kramers equation [J].
Barkai, E ;
Silbey, RJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3866-3874
[5]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[6]   Joint probability distributions for a class of non-Markovian processes [J].
Baule, A ;
Friedrich, R .
PHYSICAL REVIEW E, 2005, 71 (02)
[7]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[8]  
Drude P., 1900, Ann. Phys., V306, P566, DOI [DOI 10.1002/ANDP.19003060312, 10.1002/andp.19003060312]
[9]   Langevin approach to fractional diffusion equations including inertial effects [J].
Eule, S. ;
Friedrich, R. ;
Jenko, F. ;
Kleinhans, D. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (39) :11474-11477
[10]   Power law diffusion coefficient and anomalous diffusion: Analysis of solutions and first passage time [J].
Fa, KS ;
Lenzi, EK .
PHYSICAL REVIEW E, 2003, 67 (06) :7