Langevin approach to fractional diffusion equations including inertial effects

被引:37
作者
Eule, S.
Friedrich, R.
Jenko, F.
Kleinhans, D.
机构
[1] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
[2] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
关键词
D O I
10.1021/jp072173h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent years, several fractional generalizations of the usual Kramers-Fokker-Planck equation have been presented. Using an idea of Fogedby (Fogedby, H. C. Phys. Rev. E 1994, 50, 041103), we show how these C, equations are related to Langevin equations via the procedure of subordination.
引用
收藏
页码:11474 / 11477
页数:4
相关论文
共 18 条
[1]   Fractional Kramers equation [J].
Barkai, E ;
Silbey, RJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3866-3874
[2]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[3]  
BARKAI E, MULTI POINT DISTRIBU
[4]   A fractional diffusion equation for two-point probability distributions of a continuous-time random walk [J].
Baule, A. ;
Friedrich, R. .
EPL, 2007, 77 (01)
[5]   Joint probability distributions for a class of non-Markovian processes [J].
Baule, A ;
Friedrich, R .
PHYSICAL REVIEW E, 2005, 71 (02)
[6]  
Coffey W. T., 2004, LANGEVIN EQUATION
[7]  
Feller W., 1970, INTRO PROBABILITY TH, V2
[8]   LANGEVIN-EQUATIONS FOR CONTINUOUS-TIME LEVY FLIGHTS [J].
FOGEDBY, HC .
PHYSICAL REVIEW E, 1994, 50 (02) :1657-1660
[9]   Anomalous diffusion of inertial, weakly damped particles [J].
Friedrich, R. ;
Jenko, F. ;
Baule, A. ;
Eule, S. .
PHYSICAL REVIEW LETTERS, 2006, 96 (23)
[10]   Exact solution of a generalized Kramers-Fokker-Planck equation retaining retardation effects [J].
Friedrich, R. ;
Jenko, F. ;
Baule, A. ;
Eule, S. .
PHYSICAL REVIEW E, 2006, 74 (04)