Serial immunoassays in parallel on a microfluidic chip for monitoring hormone secretion from living cells

被引:99
作者
Dishinger, John F.
Kennedy, Robert T. [1 ]
机构
[1] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Pharmacol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1021/ac061425s
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A microfluidic chip that allows for the continuous monitoring of cellular secretions from multiple independent living samples was developed. Performance of the device was characterized through the analysis of insulin secretion from islets of Langerhans. The chip contained four individual channel networks, each capable of performing electrophoresis-based immunoassays of the perfusate from islets. In the networks, islets were housed in a chamber that was continuously perfused with pressure-driven biological media at 0.6 mu L min(-1). Electroosmosis was used to pull perfusate containing secreted insulin into 4-cm-long reaction channels where it mixed with fluorescein isothiocyanate-labeled insulin and anti-insulin antibody for 60 s. The reaction streams were sampled at 6.25-s intervals and analyzed in parallel using an on-chip capillary electrophoresis separation with laser-induced fluorescence detection by a scanning confocal microscope. The limit of detection for insulin was 10 nM. The device was used to complete over 1450 immunoassays of biological samples in less than 40 min, allowing the parallel monitoring of insulin release from four islets every 6.25 s.
引用
收藏
页码:947 / 954
页数:8
相关论文
共 39 条
[1]   Multichannel homogeneous immunoassay for detection of 2,4,6-trinitrotoluene (TNT) using a microfabricated capillary array electrophoresis chip [J].
Bromberg, A ;
Mathies, RA .
ELECTROPHORESIS, 2004, 25 (12) :1895-1900
[2]   Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay [J].
Cheng, SB ;
Skinner, CD ;
Taylor, J ;
Attiya, S ;
Lee, WE ;
Picelli, G ;
Harrison, DJ .
ANALYTICAL CHEMISTRY, 2001, 73 (07) :1472-1479
[3]   HIGH-SPEED SEPARATION OF ANTISENSE OLIGONUCLEOTIDES ON A MICROMACHINED CAPILLARY ELECTROPHORESIS DEVICE [J].
EFFENHAUSER, CS ;
PAULUS, A ;
MANZ, A ;
WIDMER, HM .
ANALYTICAL CHEMISTRY, 1994, 66 (18) :2949-2953
[4]   Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis [J].
Emrich, CA ;
Tian, HJ ;
Medintz, IL ;
Mathies, RA .
ANALYTICAL CHEMISTRY, 2002, 74 (19) :5076-5083
[5]   Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip [J].
Gao, J ;
Yin, XF ;
Fang, ZL .
LAB ON A CHIP, 2004, 4 (01) :47-52
[6]  
GILON P, 1993, J BIOL CHEM, V268, P22265
[7]   Triggering and amplifying pathways of regulation of insulin secretion by glucose [J].
Henquin, JC .
DIABETES, 2000, 49 (11) :1751-1760
[8]   Signals and pools underlying biphasic insulin secretion [J].
Henquin, JC ;
Ishiyama, N ;
Nenquin, M ;
Ravier, MA ;
Jonas, JC .
DIABETES, 2002, 51 :S60-S67
[9]   Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA [J].
Herrmann, M ;
Veres, T ;
Tabrizian, M .
LAB ON A CHIP, 2006, 6 (04) :555-560
[10]  
HONGWEI X, 2005, ELECTROPHORESIS, V26, P4711