Quantum Hall effect in higher dimensions

被引:157
作者
Karabali, D [1 ]
Nair, VP
机构
[1] CUNY Herbert H Lehman Coll, Dept Phys & Astron, Bronx, NY 10468 USA
[2] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[3] CUNY Grad Sch & Univ Ctr, New York, NY 10016 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0550-3213(02)00634-X
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Following recent work on the quantum Hall effect on S-4, we solve the Landau problem on the complex projective spaces CPk and discuss quantum Hall states for such spaces. Unlike the case of S-4, a finite spatial density can be obtained with a finite number of internal states for each particle. We treat the case of CP2 in some detail considering both Abelian and nonAbelian background fields. The wavefunctions are obtained and incompressibility of the Hall states is shown. The case of CP3 is related to the case of S-4. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:533 / 546
页数:14
相关论文
共 14 条
[1]  
ALEXANIAN G, HEPTH0103023
[2]  
BALACHANDRAN AP, HEPTH0107099
[3]  
CHEN YX, HEPTH0203095
[4]  
FABINGER M, HEPTH0201016
[5]   Noncommutative geometry and the regularization problem of 4D quantum field theory [J].
Grosse, H ;
Strohmaier, A .
LETTERS IN MATHEMATICAL PHYSICS, 1999, 48 (02) :163-179
[6]   On finite 4D quantum field theory in non-commutative geometry [J].
Grosse, H ;
Klimcik, C ;
Presnajder, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (02) :429-438
[8]   Cherbn-Simons reduction and non-Abelian fluid mechanics [J].
Jackiw, R ;
Nair, VP ;
Pi, SY .
PHYSICAL REVIEW D, 2000, 62 (08) :1-7
[10]   On brane solutions in M(atrix) theory [J].
Nair, VP ;
Randjbar-Daemi, S .
NUCLEAR PHYSICS B, 1998, 533 (1-3) :333-347