Control mechanisms for the growth of isolated vertically aligned carbon nanofibers

被引:74
作者
Merkulov, VI [1 ]
Hensley, DK
Melechko, AV
Guillorn, MA
Lowndes, DH
Simpson, ML
机构
[1] Oak Ridge Natl Lab, Mol Scale Engn & Nanoscale Technol Grp, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Thin Film & Nanostruct Mat Phys Grp, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[4] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA
关键词
D O I
10.1021/jp025647f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Isolated vertically aligned carbon nanofibers (VACNFs) have been grown using do plasma-enhanced chemical vapor deposition, and the effects of the growth conditions on VACNF morphology and composition have been determined in substantial detail. The dependence of the growth rate, tip and base diameters, and chemical composition, of isolated VACNFs on the growth parameters is described, including the effects of plasma power and gas mixture. Phenomenological models explaining the observed growth behavior are presented. The results indicate the importance of plasma control for the deterministic growth of isolated VACNFs, which are promising elements for the fabrication of practical nanoscale devices.
引用
收藏
页码:10570 / 10577
页数:8
相关论文
共 23 条
[11]   Patterned growth of individual and multiple vertically aligned carbon nanofibers [J].
Merkulov, VI ;
Lowndes, DH ;
Wei, YY ;
Eres, G ;
Voelkl, E .
APPLIED PHYSICS LETTERS, 2000, 76 (24) :3555-3557
[12]   Effects of spatial separation on the growth of vertically aligned carbon nanofibers produced by plasma-enhanced chemical vapor deposition [J].
Merkulov, VI ;
Melechko, AV ;
Guillorn, MA ;
Lowndes, DH ;
Simpson, ML .
APPLIED PHYSICS LETTERS, 2002, 80 (03) :476-478
[13]   Sharpening of carbon nanocone tips during plasma-enhanced chemical vapor growth [J].
Merkulov, VI ;
Melechko, AV ;
Guillorn, MA ;
Lowndes, DH ;
Simpson, ML .
CHEMICAL PHYSICS LETTERS, 2001, 350 (5-6) :381-385
[14]   Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition [J].
Merkulov, VI ;
Melechko, AV ;
Guillorn, MA ;
Lowndes, DH ;
Simpson, ML .
APPLIED PHYSICS LETTERS, 2001, 79 (18) :2970-2972
[15]   Shaping carbon nanostructures by controlling the synthesis process [J].
Merkulov, VI ;
Guillorn, MA ;
Lowndes, DH ;
Simpson, ML ;
Voelkl, E .
APPLIED PHYSICS LETTERS, 2001, 79 (08) :1178-1180
[16]   Carbon deposition and hydrocarbon formation on group VIII metal catalysts [J].
Nolan, PE ;
Lynch, DC ;
Cutler, AH .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (21) :4165-4175
[17]   Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode [J].
Pirio, G ;
Legagneux, P ;
Pribat, D ;
Teo, KBK ;
Chhowalla, M ;
Amaratunga, GAJ ;
Milne, WI .
NANOTECHNOLOGY, 2002, 13 (01) :1-4
[18]   Synthesis of large arrays of well-aligned carbon nanotubes on glass [J].
Ren, ZF ;
Huang, ZP ;
Xu, JW ;
Wang, JH ;
Bush, P ;
Siegal, MP ;
Provencio, PN .
SCIENCE, 1998, 282 (5391) :1105-1107
[19]   Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot [J].
Ren, ZF ;
Huang, ZP ;
Wang, DZ ;
Wen, JG ;
Xu, JW ;
Wang, JH ;
Calvet, LE ;
Chen, J ;
Klemic, JF ;
Reed, MA .
APPLIED PHYSICS LETTERS, 1999, 75 (08) :1086-1088
[20]   A REVIEW OF CATALYTICALLY GROWN CARBON NANOFIBERS [J].
RODRIGUEZ, NM .
JOURNAL OF MATERIALS RESEARCH, 1993, 8 (12) :3233-3250