Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species

被引:171
作者
de Bruijn, Irene
de Kock, Maarten J. D.
Yang, Meng
de Waard, Pieter
van Beek, Teris A.
Raaijmakers, Jos M. [1 ]
机构
[1] Univ Wageningen & Res Ctr, Phytopathol Lab, NL-6709 PD Wageningen, Netherlands
[2] Univ Wageningen & Res Ctr, Wageningen NMR Ctr, NL-6709 PD Wageningen, Netherlands
[3] Univ Wageningen & Res Ctr, Organ Chem Lab, Nat Prod Chem Grp, Wageningen, Netherlands
关键词
D O I
10.1111/j.1365-2958.2006.05525.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Analysis of microbial genome sequences have revealed numerous genes involved in antibiotic biosynthesis. In Pseudomonads, several gene clusters encoding non-ribosomal peptide synthetases (NRPSs) were predicted to be involved in the synthesis of cyclic lipopeptide (CLP) antibiotics. Most of these predictions, however, are untested and the association between genome sequence and biological function of the predicted metabolite is lacking. Here we report the genome-based identification of previously unknown CLP gene clusters in plant pathogenic Pseudomonas syringae strains B728a and DC3000 and in plant beneficial Pseudomonas fluorescens Pf0-1 and SBW25. For P. fluorescens SBW25, a model strain in studying bacterial evolution and adaptation, the structure of the CLP with a predicted 9-amino acid peptide moiety was confirmed by chemical analyses. Mutagenesis confirmed that the three identified NRPS genes are essential for CLP synthesis in strain SBW25. CLP production was shown to play a key role in motility, biofilm formation and in activity of SBW25 against zoospores of Phytophthora infestans. This is the first time that an antimicrobial metabolite is identified from strain SBW25. The results indicate that genome mining may enable the discovery of unknown gene clusters and traits that are highly relevant in the lifestyle of plant beneficial and plant pathogenic bacteria.
引用
收藏
页码:417 / 428
页数:12
相关论文
共 57 条
[41]   Evolution of cooperation and conflict in experimental bacterial populations [J].
Rainey, PB ;
Rainey, K .
NATURE, 2003, 425 (6953) :72-74
[42]   Bacterial genomics and pathogen evolution [J].
Raskin, DM ;
Seshadri, R ;
Pukatzki, SU ;
Mekalanosl, JJ .
CELL, 2006, 124 (04) :703-714
[43]   Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetases [J].
Roongsawang, N ;
Lim, SP ;
Washio, K ;
Takano, K ;
Kanaya, S ;
Morikawa, M .
FEMS MICROBIOLOGY LETTERS, 2005, 252 (01) :143-151
[44]   Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp MIS38 [J].
Roongsawang, N ;
Hase, K ;
Haruki, M ;
Imanaka, T ;
Morikawa, M ;
Kanaya, S .
CHEMISTRY & BIOLOGY, 2003, 10 (09) :869-880
[45]   The sypA, sypB and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D [J].
Scholz-Schroeder, BK ;
Soule, JD ;
Gross, DC .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2003, 16 (04) :271-280
[46]   A physical map of the syringomycin and syringopeptin gene clusters localized to an approximately 145-kb DNA region of Pseudomonas syringae pv. syringae strain B301D [J].
Scholz-Schroeder, BK ;
Soule, JD ;
Lu, SE ;
Grgurina, I ;
Gross, DC .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (12) :1426-1435
[47]   The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis [J].
Scholz-Schroeder, BK ;
Hutchison, ML ;
Grgurina, I ;
Gross, DC .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (03) :336-348
[48]   Molecular mechanisms underlying nonribosomal peptide synthesis: Approaches to new antibiotics [J].
Sieber, SA ;
Marahiel, MA .
CHEMICAL REVIEWS, 2005, 105 (02) :715-738
[49]   Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus [J].
Soler-Rivas, C ;
Jolivet, S ;
Arpin, N ;
Olivier, JM ;
Wichers, HJ .
FEMS MICROBIOLOGY REVIEWS, 1999, 23 (05) :591-614
[50]   The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LIPS interactions to maintain strength and integrity [J].
Spiers, AJ ;
Rainey, PB .
MICROBIOLOGY-SGM, 2005, 151 :2829-2839