Matrix product density operators:: Simulation of finite-temperature and dissipative systems -: art. no. 207204

被引:803
作者
Verstraete, F [1 ]
García-Ripoll, JJ [1 ]
Cirac, JI [1 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
关键词
D O I
10.1103/PhysRevLett.93.207204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how to simulate numerically the evolution of 1D quantum systems under dissipation as well as in thermal equilibrium. The method applies to both finite and inhomogeneous systems, and it is based on two ideas: (a) a representation for density operators which extends that of matrix product states to mixed states; (b) an algorithm to approximate the evolution (in real or imaginary time) of matrix product states which is variational.
引用
收藏
页码:207204 / 1
页数:4
相关论文
共 25 条
[1]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[2]   The density matrix renormalization group for a quantum spin chain at non-zero temperature [J].
Bursill, RJ ;
Xiang, T ;
Gehring, GA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (40) :L583-L590
[3]  
Carmichael H., 1993, OPEN SYSTEMS APPROAC
[4]   Time-dependent density-matrix renormalization group: A systematic method for the study of quantum many-body out-of-equilibrium systems [J].
Cazalilla, MA ;
Marston, JB .
PHYSICAL REVIEW LETTERS, 2002, 88 (25) :4-256403
[5]   New frontiers in quantum information with atoms and ions [J].
Cirac, JI ;
Zoller, P .
PHYSICS TODAY, 2004, 57 (03) :38-44
[6]   Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces -: art. no. P04005 [J].
Daley, AJ ;
Kollath, C ;
Schollwöck, U ;
Vidal, G .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[7]   Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains [J].
Dukelsky, J ;
Martin-Delgado, MA ;
Nishino, T ;
Sierra, G .
EUROPHYSICS LETTERS, 1998, 43 (04) :457-462
[8]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[9]  
Gardiner C. W., 2000, QUANTUM NOISE
[10]   Comment on "Time-dependent density-matrix renormalization group: A systematic method for the study of quantum many-body out-of-equilibrium systems" [J].
Luo, HG ;
Xiang, T ;
Wang, XQ .
PHYSICAL REVIEW LETTERS, 2003, 91 (04)