Continuous-flow electroreduction of carbon dioxide

被引:300
作者
Endrodi, B. [1 ,2 ]
Bencsik, G. [1 ,2 ]
Darvas, F. [3 ]
Jones, R. [3 ]
Rajeshwar, K. [4 ]
Janaky, C. [1 ,2 ]
机构
[1] MTA SZTE Lendulet Photoelectrochem Res Grp, Rerrich Sq 1, H-6720 Szeged, Hungary
[2] Univ Szeged, Dept Phys Chem & Mat Sci, Rerrich Sq 1, H-6720 Szeged, Hungary
[3] ThalesNano Inc, Zahony U 7, H-1031 Budapest, Hungary
[4] Univ Texas Arlington, Dept Chem & Biochem, Arlington, TX 76019 USA
基金
欧洲研究理事会;
关键词
Electrolysis; CO2; conversion; Renewable energy; Syngas; Solar fuels; SOLID POLYMER ELECTROLYTE; GAS-DIFFUSION ELECTRODES; CONTINUOUS ELECTROCHEMICAL REDUCTION; CO2; REDUCTION; ELECTROCATALYTIC CONVERSION; MICROFLUIDIC REACTOR; OPERATING-CONDITIONS; CATALYST LAYERS; CURRENT-DENSITY; WASTE-WATER;
D O I
10.1016/j.pecs.2017.05.005
中图分类号
O414.1 [热力学];
学科分类号
摘要
Solar fuel generation through electrochemical CO2 conversion offers an attractive avenue to store the energy of sunlight in the form of chemical bonds, with the simultaneous remediation of a greenhouse gas. While impressive progress has been achieved in developing novel nanostructured catalysts and understanding the mechanistic details of this process, limited knowledge has been gathered on continuous-flow electrochemical reactors for CO2 electroreduction. This is indeed surprising considering that this might be the only way to scale-up this fledgling technology for future industrial application. In this review article, we discuss the parameters that influence the performance of flow CO2 electrolyzers. This analysis spans the overall design of the electrochemical cell (microfluidic or membrane-based), the employed materials (catalyst, support, etc.), and the operational conditions (electrolyte, pressure, temperature, etc.). We highlight R&D avenues offering particularly promising development opportunities together with the intrinsic limitations of the different approaches. By collecting the most relevant characterization methods (together with the relevant descriptive parameters), we also present an assessment framework for benchmarking CO2 electrolyzers. Finally, we give a brief outlook on photoelectrochemical reactors where solar energy input is directly utilized. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:133 / 154
页数:22
相关论文
共 141 条
[1]   Effect of cationic and anionic solid polymer electrolyte on direct electrochemical reduction of gaseous CO2 to fuel [J].
Aeshala, L. M. ;
Uppaluri, R. G. ;
Verma, A. .
JOURNAL OF CO2 UTILIZATION, 2013, 3-4 :49-55
[2]   Effect of solid polymer electrolyte on electrochemical reduction of CO2 [J].
Aeshala, L. M. ;
Rahman, S. U. ;
Verma, A. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 94 :131-137
[3]   The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility [J].
Agarwal, Arun S. ;
Zhai, Yumei ;
Hill, Davion ;
Sridhar, Narasi .
CHEMSUSCHEM, 2011, 4 (09) :1301-1310
[4]   Towards the electrochemical conversion of carbon dioxide into methanol [J].
Albo, J. ;
Alvarez-Guerra, M. ;
Castano, P. ;
Irabien, A. .
GREEN CHEMISTRY, 2015, 17 (04) :2304-2324
[5]   Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols [J].
Albo, Jonathan ;
Vallejo, Daniel ;
Beobide, Garikoitz ;
Castillo, Oscar ;
Castano, Pedro ;
Irabien, Angel .
CHEMSUSCHEM, 2017, 10 (06) :1100-1109
[6]   Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol [J].
Albo, Jonathan ;
Irabien, Angel .
JOURNAL OF CATALYSIS, 2016, 343 :232-239
[7]   Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution [J].
Albo, Jonathan ;
Saez, Alfonso ;
Solla-Gullon, Jose ;
Montiel, Vicente ;
Irabien, Angel .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 176 :709-717
[8]   Ionic liquids in the electrochemical valorisation of CO2 [J].
Alvarez-Guerra, Manuel ;
Albo, Jonathan ;
Alvarez-Guerra, Enrique ;
Irabien, Angel .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (09) :2574-2599
[9]   Continuous electrochemical reduction of carbon dioxide into formate using a tin cathode: Comparison with lead cathode [J].
Alvarez-Guerra, Manuel ;
Del Castillo, Andres ;
Irabien, Angel .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2014, 92 (04) :692-701
[10]   Electrolyte-less design of PEC cells for solar fuels: Prospects and open issues in the development of cells and related catalytic electrodes [J].
Ampelli, Claudio ;
Centi, Gabriele ;
Passalacqua, Rosalba ;
Perathoner, Siglinda .
CATALYSIS TODAY, 2016, 259 :246-258