Mitochondrial sirtuins

被引:197
作者
Huang, Jing-Yi [1 ]
Hirschey, Matthew D. [1 ]
Shimazu, Tadahiro [1 ]
Ho, Linh [1 ]
Verdin, Eric [1 ]
机构
[1] Univ Calif San Francisco, Gladstone Inst Virol & Immunol, San Francisco, CA 94158 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS | 2010年 / 1804卷 / 08期
关键词
Mitochondria; Sirtuin; SIRT3; SIRT4; SIRT5; O-Acetyl-ADP-ribose; Acetylation; ACETYL-ADP-RIBOSE; INSULIN DEGRADING ENZYME; COLONY-ENHANCING FACTOR; RAT-LIVER MITOCHONDRIA; COA SYNTHETASE 2; YEAST SIR2 GENE; GLUTAMATE-DEHYDROGENASE; CALORIE RESTRICTION; LYSINE ACETYLATION; DEPENDENT DEACETYLASE;
D O I
10.1016/j.bbapap.2009.12.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sirtuins have emerged as important proteins in aging, stress resistance and metabolic regulation. Three sirtuins, SIRT3, 4 and 5, are located within the mitochondrial matrix. SIRT3 and SIRT5 are NAD(+)-dependent deacetylases that remove acetyl groups from acetyllysine-modified proteins and yield 2'-O-acetyl-ADP-ribose and nicotinamide. SIRT4 can transfer the ADP-ribose group from NAD(+) onto acceptor proteins. Recent findings reveal that a large fraction of mitochondrial proteins are acetylated and that mitochondrial protein acetylation is modulated by nutritional status. This and the identification of targets for SIRT3, 4 and 5 support the model that mitochondrial sirtuins are metabolic sensors that modulate the activity of metabolic enzymes via protein deacetylation or mono-ADP-ribosylation. Here, we review and discuss recent progress in the study of mitochondrial sirtuins and their targets. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1645 / 1651
页数:7
相关论文
共 102 条
[51]   The identification of potential factors associated with the development of type 2 diabetes - A quantitative proteomics approach [J].
Lu, Hongfang ;
Yang, Ying ;
Allister, Emma M. ;
Wijesekara, Nadeeja ;
Wheeler, Michael B. .
MOLECULAR & CELLULAR PROTEOMICS, 2008, 7 (08) :1434-1451
[52]   Negative control of p53 by Sir2α promotes cell survival under stress [J].
Luo, JY ;
Nikolaev, AY ;
Imai, S ;
Chen, DL ;
Su, F ;
Shiloh, A ;
Guarente, L ;
Gu, W .
CELL, 2001, 107 (02) :137-148
[53]   Assignment of the NAD-dependent deacetylase sirtuin 5 gene (SIRT5) to human chromosome band 6p23 by in situ hybridization [J].
Mahlknecht, U ;
Ho, AD ;
Letzel, S ;
Voelter-Mahlknecht, S .
CYTOGENETIC AND GENOME RESEARCH, 2006, 112 (3-4) :208-212
[54]   Amyloid β-degrading cryptidases:: insulin degrading enzyme, presequence peptidase, and neprilysin [J].
Malito, E. ;
Hulse, R. E. ;
Tang, W. -J. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2008, 65 (16) :2574-2585
[55]   Structure of histone deacetylases: Insights into substrate recognition and catalysis [J].
Marmorstein, R .
STRUCTURE, 2001, 9 (12) :1127-1133
[56]   Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba [J].
Marsh, VL ;
Peak-Chew, SY ;
Bell, SD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (22) :21122-21128
[57]   NITROGEN-METABOLISM AND ORNITHINE CYCLE FUNCTION [J].
MEIJER, AJ ;
LAMERS, WH ;
CHAMULEAU, RAFM .
PHYSIOLOGICAL REVIEWS, 1990, 70 (03) :701-748
[58]   Sirtuins in mammals: insights into their biological function [J].
Michan, Shaday ;
Sinclair, David .
BIOCHEMICAL JOURNAL, 2007, 404 :1-13
[59]   Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins [J].
Michishita, E ;
Park, JY ;
Burneskis, JM ;
Barrett, JC ;
Horikawa, I .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (10) :4623-4635
[60]   SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin [J].
Michishita, Eriko ;
McCord, Ronald A. ;
Berber, Elisabeth ;
Kioi, Mitomu ;
Padilla-Nash, Hesed ;
Damian, Mara ;
Cheung, Peggie ;
Kusumoto, Rika ;
Kawahara, Tiara L. A. ;
Barrett, J. Carl ;
Chang, Howard Y. ;
Bohr, Vilhelm A. ;
Ried, Thomas ;
Gozani, Or ;
Chua, Katrin F. .
NATURE, 2008, 452 (7186) :492-U16