Proteomic identification of all plastid-specific ribosomal proteins in higher plant chloroplast 30S ribosomal subunit -: PSRP-2 (U1A-type domains), PSRP-3α/β (ycf65 homologue) and PSRP-4 (Thx homologue)

被引:98
作者
Yamaguchi, K
Subramanian, AR
机构
[1] Max Planck Inst Mol Genet, Berlin, Germany
[2] Univ Arizona, Dept Biochem, Tucson, AZ USA
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2003年 / 270卷 / 02期
关键词
chloroplast-specific ribosomal protein; proteomics;
D O I
10.1046/j.1432-1033.2003.03359.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Six ribosomal proteins are specific to higher plant chloroplast ribosomes [Subramanian, A.R. (1993) Trends Biochem. Sci. 18 , 177-180]. Three of them have been fully characterized [Yamaguchi, K., von Knoblauch, K. & Subramanian, A. R. (2000) J. Biol. Chem. 275 , 28455-28465; Yamaguchi, K. & Subramanian, A. R. (2000) J. Biol. Chem. 275 , 28466-28482]. The remaining three plastid-specific ribosomal proteins (PSRPs), all on the small subunit, have now been characterized (2D PAGE, HPLC, N -terminal/internal peptide sequencing, electrospray ionization MS, cloning/ sequencing of precursor cDNAs). PSRP-3 exists in two forms (alpha/beta, N-terminus free and blocked by post-translational modification), whereas PSRP-2 and PSRP-4 appear, from MS data, to be unmodified. PSRP-2 contains two RNA-binding domains which occur in mRNA processing/stabilizing proteins (e.g. U1A snRNP, poly(A)-binding proteins), suggesting a possible role for it in the recruiting of stored chloroplast mRNAs for active protein synthesis. PSRP-3 is the higher plant orthologue of a hypothetical protein (ycf65 gene product), first reported in the chloroplast genome of a red alga. The ycf65 gene is absent from the chloroplast genomes of higher plants. Therefore, we suggest that Psrp-3/ycf65 , encoding an evolutionarily conserved chloroplast ribosomal protein, represents an example of organelle-to-nucleus gene transfer in chloroplast evolution. PSRP-4 shows strong homology with Thx, a small basic ribosomal protein of Thermus thermophilus 30S subunit (with a specific structural role in the subunit crystallographic structure), but its orthologues are absent from Escherichia coli and the photosynthetic bacterium Synechocystis . We would therefore suggest that PSRP-4 is an example of gene capture (via horizontal gene transfer) during chloro-ribosome emergence. Orthologues of all six PSRPs are identifiable in the complete genome sequence of Arabidopsis thaliana and in the higher plant expressed sequence tag database. All six PSRPs are nucleus-encoded. The cytosolic precursors of PSRP-2, PSRP-3, and PSRP-4 have average targeting peptides (62, 58, and 54 residues long), and the mature proteins are of 196, 121, and 47 residues length (molar masses, 21.7, 13.8 and 5.2 kDa), respectively. Functions of the PSRPs as active participants in translational regulation, the key feature of chloroplast protein synthesis, are discussed and a model is proposed.
引用
收藏
页码:190 / 205
页数:16
相关论文
共 94 条
[81]   PURIFICATION AND CHARACTERIZATION OF THE 30S RIBOSOMAL-PROTEINS FROM THE BACTERIUM THERMUS-THERMOPHILUS [J].
TSIBOLI, P ;
HERFURTH, E ;
CHOLI, T .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 226 (01) :169-177
[82]   MITOCHONDRIAL TARGETING SEQUENCES MAY FORM AMPHIPHILIC HELICES [J].
VONHEIJNE, G .
EMBO JOURNAL, 1986, 5 (06) :1335-1342
[83]   A 5 KDA PROTEIN (SCS23) FROM THE 30-S SUBUNIT OF THE SPINACH CHLOROPLAST RIBOSOME [J].
WADA, A ;
KOYAMA, K ;
MAKI, Y ;
SHIMOI, Y ;
TANAKA, A ;
TSUJI, H .
FEBS LETTERS, 1993, 319 (1-2) :115-118
[84]   STRUCTURE AND PROBABLE GENETIC LOCATION OF A RIBOSOME MODULATION FACTOR ASSOCIATED WITH 100S RIBOSOMES IN STATIONARY-PHASE ESCHERICHIA-COLI-CELLS [J].
WADA, A ;
YAMAZAKI, Y ;
FUJITA, N ;
ISHIHAMA, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (07) :2657-2661
[85]   Growth phase coupled modulation of Escherichia coli ribosomes [J].
Wada, A .
GENES TO CELLS, 1998, 3 (04) :203-208
[86]   Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: The existence of genes possibly involved in chloroplast division [J].
Wakasugi, T ;
Nagai, T ;
Kapoor, M ;
Sugita, M ;
Ito, M ;
Ito, S ;
Tsudzuki, J ;
Nakashima, K ;
Tsudzuki, T ;
Suzuki, Y ;
Hamada, A ;
Ohta, T ;
Inamura, A ;
Yoshinaga, K ;
Sugiura, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (11) :5967-5972
[87]   Structure of the 30S ribosomal subunit [J].
Wimberly B.T. ;
Brodersen D.E. ;
Clemons Jr. W.M. ;
Morgan-Warren R.J. ;
Carter A.P. ;
Vonrheln C. ;
Hartsch T. ;
Ramakrishnan V. .
Nature, 2000, 407 (6802) :327-339
[88]  
Wool IG, 1996, TRENDS BIOCHEM SCI, V21, P164, DOI 10.1016/S0968-0004(96)20011-8
[89]   The plastid ribosomal proteins - Identification of all the proteins in the 30 S subunit of an organelle ribosome (chloroplast) [J].
Yamaguchi, K ;
von Knoblauch, K ;
Subramanian, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :28455-28465
[90]  
Yamaguchi K, 2000, J BIOL CHEM, V275, P28466, DOI 10.1074/jbc.M005012200