Linearized group field theory and power-counting theorems

被引:41
作者
Ben Geloun, Joseph [1 ,2 ,3 ]
Krajewski, Thomas [1 ,4 ]
Magnen, Jacques [5 ]
Rivasseau, Vincent [1 ]
机构
[1] Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France
[2] Univ Abomey Calavi, ICMPA, UNESCO Chair, Cotonou, Benin
[3] Univ Cheikh Anta Diop, Fac Sci & Tech, Dept Math & Informat, Dakar, Senegal
[4] CNRS Marseille Luminy, CNRS UMR 6207, Ctr Phys Theor, F-13288 Marseille 9, France
[5] Ecole Polytech, CNRS, UMR 7644, Ctr Phys Theor, F-91128 Palaiseau, France
关键词
PARAMETRIC REPRESENTATION; MODELS;
D O I
10.1088/0264-9381/27/15/155012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce a linearized version of group field theory. It can be viewed either as a group field theory over the additive group of a vector space or as an asymptotic expansion of any group field theory around the unit group element. We prove exact power-counting theorems for any graph of such models. For linearized colored models the power counting of any amplitude is further computed in terms of the homology of the graph. An exact power-counting theorem is also established for a particular class of graphs of the nonlinearized models, which satisfy a planarity condition. Examples and connections with previous results are discussed.
引用
收藏
页数:14
相关论文
共 14 条
[1]   A MODEL OF 3-DIMENSIONAL LATTICE GRAVITY [J].
BOULATOV, DV .
MODERN PHYSICS LETTERS A, 1992, 7 (18) :1629-1646
[2]   Nonperturbative summation over 3D discrete topologies [J].
Freidel, L ;
Louapre, D .
PHYSICAL REVIEW D, 2003, 68 (10)
[3]   Group field theory: An overview [J].
Freidel, L .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (10) :1769-1783
[4]   Group field theory renormalization in the 3D case: Power counting of divergences [J].
Freidel, Laurent ;
Gurau, Razvan ;
Oriti, Daniele .
PHYSICAL REVIEW D, 2009, 80 (04)
[5]  
GELOUN JB, 2009, ARXIV09111719HEPTH
[6]  
GURAU R, 2009, ARXIV09111945HEPTH
[7]  
Gurau R, 2009, ARXIV09072582HEPTH
[8]   Parametric representation of noncommutative field theory [J].
Gurau, Razvan ;
Rivasseau, Vincent .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (03) :811-835
[9]  
KRAJEWSKI T, 2009, ARXIV09125438MATHPH
[10]   Topological graph polynomials and quantum field theory Part I: heat kernel theories [J].
Krajewski, Thomas ;
Rivasseau, Vincent ;
Tanasa, Adrian ;
Wang, Zhituo .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2010, 4 (01) :29-82