Fabrication and structural characterization of self-supporting electrolyte membranes for a micro solid-oxide fuel cell

被引:118
作者
Baertsch, CD
Jensen, KF [1 ]
Hertz, JL
Tuller, HL
Vengallatore, ST
Spearing, SM
Schmidt, MA
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[4] MIT, Microsyst Technol Ctr, Cambridge, MA 02139 USA
关键词
D O I
10.1557/JMR.2004.0350
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Micromachined fuel cells are among a class of microscale devices being explored for portable power generation. In this paper, we report processing and geometric design criteria for the fabrication of free-standing electrolyte membranes for microscale solid-oxide fuel cells. Submicron, dense, nanocrystalline yttria-stabilized zirconia (YSZ) and gadolinium-doped ceria (GDC) films were deposited onto silicon nitride membranes using electron-beam evaporation and sputter deposition. Selective silicon nitride removal leads to free-standing, square, electrolyte membranes with side dimensions as large as 1025 mum for YSZ and 525 mum for GDC, with high processing yields for YSZ. Residual stresses are tensile (+85 to +235 MPa) and compressive (-865 to -155 MPa) in as-deposited evaporated and sputtered films, respectively. Tensile evaporated films fail via brittle fracture during annealing at temperatures below 773 K; thermal limitations are dependent on the film thickness to membrane size aspect ratio. Sputtered films with compressive residual stresses show superior mechanical and thermal stability than evaporated films. Sputtered 1025-mum membranes survive annealing at 773 K, which leads to the generation of tensile stresses and brittle fracture at elevated temperatures (923 K).
引用
收藏
页码:2604 / 2615
页数:12
相关论文
共 38 条
[1]   Room-temperature epitaxial growth of CeO2(001) thin films on Si(001) substrates by electron beam evaporation [J].
Ami, T ;
Ishida, Y ;
Nagasawa, N ;
Machida, A ;
Suzuki, M .
APPLIED PHYSICS LETTERS, 2001, 78 (10) :1361-1363
[2]   A microfabricated suspended-tube chemical reactor for thermally efficient fuel processing [J].
Arana, LR ;
Schaevitz, SB ;
Franz, AJ ;
Schmidt, MA ;
Jensen, KF .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2003, 12 (05) :600-612
[3]   Chemically-induced stresses in ceramic oxygen ion-conducting membranes [J].
Atkinson, A ;
Ramos, TMGM .
SOLID STATE IONICS, 2000, 129 (1-4) :259-269
[4]   Technology of integrable free-standing yttria-stabilized zirconia membranes [J].
Bruschi, P ;
Diligenti, A ;
Nannini, A ;
Piotto, M .
THIN SOLID FILMS, 1999, 346 (1-2) :251-254
[5]   Materials and processes for small fuel cells [J].
Chang, H ;
Kim, JR ;
Cho, JH ;
Kim, HK ;
Choi, KH .
SOLID STATE IONICS, 2002, 148 (3-4) :601-606
[6]   Thin-film solid oxide fuel cell with high performance at low-temperature [J].
deSouza, S ;
Visco, SJ ;
DeJonghe, LC .
SOLID STATE IONICS, 1997, 98 (1-2) :57-61
[7]   MORPHOLOGICAL AND ELECTRICAL PROPERTIES OF RF SPUTTERED Y2O3-DOPED ZRO2 THIN-FILMS [J].
GREENE, JE ;
WICKERSHAM, CE ;
ZILKO, JL ;
WELSH, LB ;
SZOFRAN, FR .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1976, 13 (01) :72-75
[8]   Characterization of yttria-stabilized zirconia thin films deposited by electron beam evaporation on silicon substrates [J].
Hartmanova, M ;
Thurzo, I ;
Jergel, M ;
Bartos, J ;
Kadlec, F ;
Zelezny, V ;
Tunega, D ;
Kundracik, F ;
Chromik, S ;
Brunel, M .
JOURNAL OF MATERIALS SCIENCE, 1998, 33 (04) :969-975
[9]   Electron beam directed vapor deposition of thermal barrier coatings [J].
Hass, DD ;
Parrish, PA ;
Wadey, HNG .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1998, 16 (06) :3396-3401
[10]   Fuel cells for low power applications [J].
Heinzel, A ;
Hebling, C ;
Müller, M ;
Zedda, M ;
Müller, C .
JOURNAL OF POWER SOURCES, 2002, 105 (02) :250-255