Extreme value properties of multivariate t copulas

被引:92
作者
Nikoloulopoulos, Aristidis K. [1 ]
Joe, Harry [1 ]
Li, Haijun [2 ]
机构
[1] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
[2] Washington State Univ, Dept Math, Pullman, WA 99164 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Tail dependence function; Extreme value; t Copula; MAXIMA;
D O I
10.1007/s10687-008-0072-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The extremal dependence behavior of t copulas is examined and their extreme value limiting copulas, called the t-EV copulas, are derived explicitly using tail dependence functions. As two special cases, the Husler-Reiss and the Marshall-Olkin distributions emerge as limits of the t-EV copula as the degrees of freedom go to infinity and zero respectively. The t copula and its extremal variants attain a wide range in the set of bivariate tail dependence parameters.
引用
收藏
页码:129 / 148
页数:20
相关论文
共 16 条
[1]  
[Anonymous], 2006, UNCERTAINTY ANAL HIG, DOI DOI 10.1002/0470863072
[2]  
[Anonymous], 2004, Multivariate T Distributions and Their Applications
[3]  
[Anonymous], 2005, PRINCETON SERIES FIN
[4]  
[Anonymous], 2006, Extremes, DOI DOI 10.1007/S10687-006-0015-X
[5]   The t copula and related copulas [J].
Demarta, S ;
McNeil, AJ .
INTERNATIONAL STATISTICAL REVIEW, 2005, 73 (01) :111-129
[6]  
Embrechts P., 2002, RISK MANAGEMENT VALU
[7]  
FALK M, 2004, DMV SEMINAR, V23
[8]   Comparison of methods for the computation of multivariate t probabilities [J].
Genz, A ;
Bretz, F .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2002, 11 (04) :950-971
[9]   On the multivariate Husler-Reiss distribution attracting the maxima of elliptical triangular arrays [J].
Hashorva, Enkelejd .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (18) :2027-2035
[10]   MAXIMA OF NORMAL RANDOM VECTORS - BETWEEN INDEPENDENCE AND COMPLETE DEPENDENCE [J].
HUSLER, J ;
REISS, RD .
STATISTICS & PROBABILITY LETTERS, 1989, 7 (04) :283-286