Semiparametric Bayesian inference for stochastic frontier models

被引:55
作者
Griffin, JE
Steel, MFJ [1 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[2] Univ Kent, Inst Math Stat & Acturial Sci, Canterbury CT2 7NF, Kent, England
关键词
Dirichlet process; efficiency measurement; hospital cost frontiers; Markov chain Monte Carlo;
D O I
10.1016/j.jeconom.2003.11.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we propose a semiparametric Bayesian framework for the analysis of stochastic frontiers and efficiency measurement. The distribution of inefficiencies is modelled nonparametrically through a Dirichlet process prior. We suggest prior distributions and implement a Bayesian analysis through an efficient Markov chain Monte Carlo sampler, which allows us to deal with practically relevant sample sizes. We also consider the case where the efficiency distribution varies with firm characteristics. The methodology is applied to a cost frontier, estimated from a panel data set on 382 U.S. hospitals. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:121 / 152
页数:32
相关论文
共 43 条
[11]   BAYESIAN DENSITY-ESTIMATION AND INFERENCE USING MIXTURES [J].
ESCOBAR, MD ;
WEST, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :577-588
[12]   Semiparametric estimation of stochastic production frontier models [J].
Fan, YQ ;
Li, Q ;
Weersink, A .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1996, 14 (04) :460-468
[13]   BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1973, 1 (02) :209-230
[14]   On the use of panel data in stochastic frontier models with improper priors [J].
Fernandez, C ;
Osiewalski, J ;
Steel, MFJ .
JOURNAL OF ECONOMETRICS, 1997, 79 (01) :169-193
[15]   Benchmark priors for Bayesian model averaging [J].
Fernández, C ;
Ley, E ;
Steel, MFJ .
JOURNAL OF ECONOMETRICS, 2001, 100 (02) :381-427
[16]  
FLORENS JP, 1998, BAYESIAN ENCOMPASSIN
[17]   EFFICIENT PARAMETRIZATIONS FOR NORMAL LINEAR MIXED MODELS [J].
GELFAND, AE ;
SAHU, SK ;
CARLIN, BP .
BIOMETRIKA, 1995, 82 (03) :479-488
[18]   A computational approach for full nonparametric Bayesian inference under Dirichlet process mixture models [J].
Gelfand, AE ;
Kottas, A .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2002, 11 (02) :289-305
[19]  
GILKS WR, 1992, J ROYAL STAT SOC C, V34, P198
[20]  
GOOD IJ, 1952, J ROY STAT SOC B, V14, P107