Decoding Phases of Matter by Machine-Learning Raman Spectroscopy

被引:20
作者
Cui, Anyang [1 ]
Jiang, Kai [1 ]
Jiang, Minhong [2 ]
Shang, Liyan [1 ]
Zhu, Liangqing [1 ]
Hu, Zhigao [1 ,3 ,4 ]
Xu, Guisheng [5 ]
Chu, Junhao [1 ,3 ,4 ]
机构
[1] East China Normal Univ, Sch Phys & Elect Sci, Tech Ctr Multifunct Magnetoopt Spect Shanghai, Dept Mat, Shanghai 200241, Peoples R China
[2] Guilin Univ Elect Technol, Guangxi Key Lab Informat Mat, Dept Mat Sci & Engn, Guilin 541004, Guangxi, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[4] Fudan Univ, Shanghai Inst Intelligent Elect & Syst, Shanghai 200433, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Ceram, Key Lab Transparent Optofunct Adv Inorgan Mat, Shanghai 201899, Peoples R China
基金
中国国家自然科学基金;
关键词
LEAD-FREE; PIEZOELECTRIC PROPERTIES; SINGLE-CRYSTAL; DESIGN; TRANSITIONS; PROPERTY;
D O I
10.1103/PhysRevApplied.12.054049
中图分类号
O59 [应用物理学];
学科分类号
摘要
Phase transitions of condensed matter have long been a spotlight issue studied by extensive theoretical and experimental investigations. Machine learning can build an integral model-dominant workflow to statistically analyze the collective dynamics of materials and deduce the structure. We use a supportvector-machine algorithm to propose an effective method to recognize the orthorhombic, tetragonal, and cubic phases as well as to construct the phase diagram in ferroelectric crystals by mining and learning the behavioral vectors of the phonon vibrations in a crystalline lattice from Raman scattering, which is a tool typically used to detect structural properties at the molecular level. This study creates a unifying framework including material synthesis and characterization, feature engineering and principal-component analysis, learner evaluation and optimization, structure prediction, and future development of the model. It paves the way to the application of a generic approach for predicting unexplored structures and materials in the future.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Increasing the Impact of Materials in and beyond Bio-Nano Science [J].
Bjornmalm, Mattias ;
Faria, Matthew ;
Caruso, Frank .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (41) :13449-13456
[2]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[3]   Classification of local chemical environments from x-ray absorption spectra using supervised machine learning [J].
Carbone, Matthew R. ;
Yoo, Shinjae ;
Topsakal, Mehmet ;
Lu, Deyu .
PHYSICAL REVIEW MATERIALS, 2019, 3 (03)
[4]  
Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI [10.1038/nphys4035, 10.1038/NPHYS4035]
[5]   Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing [J].
Correa-Baena, Juan-Pablo ;
Hippalgaonkar, Kedar ;
van Duren, Jeroen ;
Jaffer, Shaffiq ;
Chandrasekhar, Vijay R. ;
Stevanovic, Vladan ;
Wadia, Cyrus ;
Guha, Supratik ;
Buonassisi, Tonio .
JOULE, 2018, 2 (08) :1410-1420
[6]   Materials science - Lead-free at last [J].
Cross, E .
NATURE, 2004, 432 (7013) :24-25
[7]   Exploring lattice symmetry evolution with discontinuous phase transition by Raman scattering criteria: The single-crystalline (K, Na)NbO3 model system [J].
Cui, Anyang ;
Ye, Yan ;
Zheng, Limei ;
Jiang, Kai ;
Zhu, Liangqing ;
Shang, Liyan ;
Li, Yawei ;
Hu, Zhigao ;
Chu, Junhao .
PHYSICAL REVIEW B, 2019, 100 (02)
[8]   In Situ Exploration of Thermal-Induced Domain Evolution with Phase Transition in LiNbO3-Modified K0.5Na0.5NbO3 Single Crystal [J].
Cui, Anyang ;
Jiang, Kai ;
Zhang, Peng ;
Xu, Liping ;
Xu, Guisheng ;
Chen, Xiaomin ;
Hu, Zhigao ;
Chu, Junhao .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (26) :14322-14329
[9]   Temperature dependent Raman scattering and far-infrared reflectance spectra of MgO modified Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ceramics: A composition effect [J].
Duan, Z. H. ;
Chang, P. ;
Hu, Z. G. ;
Wang, J. X. ;
Wang, G. S. ;
Dong, X. L. ;
Chu, J. H. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (09)
[10]   Raman spectroscopy of graphene under ultrafast laser excitation [J].
Ferrante, C. ;
Virga, A. ;
Benfatto, L. ;
Martinati, M. ;
De Fazio, D. ;
Sassi, U. ;
Fasolato, C. ;
Ott, A. K. ;
Postorino, P. ;
Yoon, D. ;
Cerullo, G. ;
Mauri, F. ;
Ferrari, A. C. ;
Scopigno, T. .
NATURE COMMUNICATIONS, 2018, 9