SIRT1-dependent regulation of chromatin and transcription: Linking NAD+ metabolism and signaling to the control of cellular functions

被引:231
作者
Zhang, Tong [1 ]
Kraus, W. Lee [1 ,2 ]
机构
[1] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Pharmacol, Weill Med Coll, New York, NY 10021 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS | 2010年 / 1804卷 / 08期
关键词
SIRT1; NAD(+); Deacetylation; Transcription; Chromatin; Metabolism; COLONY-ENHANCING FACTOR; LIFE-SPAN EXTENSION; ACETYL-ADP-RIBOSE; FATTY-ACID OXIDATION; CALORIE RESTRICTION; GENE-EXPRESSION; SACCHAROMYCES-CEREVISIAE; DNA-DAMAGE; NICOTINAMIDE PHOSPHORIBOSYLTRANSFERASE; DEACETYLASE ACTIVITY;
D O I
10.1016/j.bbapap.2009.10.022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sirtuins comprise a family of NAD(+)-dependent protein deacetylases and ADP-ribosyltransferases. Mammalian SIRT1 - a homolog of yeast Sir2, the prototypical member of the sirtuin family - is an important regulator of metabolism, cell differentiation and senescence, stress response, and cancer. As an NAD(+)-dependent enzyme, SIRT1 regulates gene expression programs in response to cellular metabolic status, thereby coordinating metabolic adaptation of the whole organism. Several important mechanisms have emerged for SIRT1-dependent regulation of transcription. First. SIRT1 can modulate chromatin function through direct deacetylation of histones as well as by promoting alterations in the methylation of histones and DNA, leading to the repression of transcription. The latter is accomplished through the recruitment of other nuclear enzymes to chromatin for histone methylation and DNA CpG methylation, suggesting a broader role of SIRT1 in epigenetic regulation. Second, SIRT1 can interact and deacetylate a broad range of transcription factors and coregulators, thereby regulating target gene expression both positively and negatively. Cellular energy state, specifically NAD(+) metabolism, plays a major role in the regulation of SIRT1 activity. Recent studies on the NAD(+) biosynthetic enzymes in the salvage pathway, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase 1 (NMNAT-1), have revealed important functions for these enzymes in SIRT1-dependent transcription regulation. The collective molecular actions of SIRT1 control specific patterns of gene expression that modulate a wide variety of physiological outcomes. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1666 / 1675
页数:10
相关论文
共 151 条
[31]   Transcriptional targets of sirtuins in the coordination of mammalian physiology [J].
Feige, Jerome N. ;
Auwerx, Johan .
CURRENT OPINION IN CELL BIOLOGY, 2008, 20 (03) :303-309
[32]   Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes [J].
Frescas, D ;
Valenti, L ;
Accili, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (21) :20589-20595
[33]   Hormonal control of androgen receptor function through SIRT1 [J].
Fu, Maofu ;
Liu, Manran ;
Sauve, Anthony A. ;
Jiao, Xuanmao ;
Zhang, Xueping ;
Wu, Xiaofang ;
Powell, Michael J. ;
Yang, Tianle ;
Gu, Wei ;
Avantaggiati, Maria Laura ;
Pattabiraman, Nagarajan ;
Pestell, Timothy G. ;
Wang, Fang ;
Quong, Andrew A. ;
Wang, Chenguang ;
Pestell, Richard G. .
MOLECULAR AND CELLULAR BIOLOGY, 2006, 26 (21) :8122-8135
[34]   RETRACTED: Visfatin: A protein secreted by visceral fat that mimics the effects of insulin (Retracted article, see vol 318, pg 565, 2007) [J].
Fukuhara, A ;
Matsuda, M ;
Nishizawa, M ;
Segawa, K ;
Tanaka, M ;
Kishimoto, K ;
Matsuki, Y ;
Murakami, M ;
Ichisaka, T ;
Murakami, H ;
Watanabe, E ;
Takagi, T ;
Akiyoshi, M ;
Ohtsubo, T ;
Kihara, S ;
Yamashita, S ;
Makishima, M ;
Funahashi, T ;
Yamanaka, S ;
Hiramatsu, R ;
Matsuzawa, Y ;
Shimomura, I .
SCIENCE, 2005, 307 (5708) :426-430
[35]   Visfatin: A protein secreted by visceral fat that mimics the effects of insulin (Retraction of vol 307, pg 426, 2005) [J].
Fukuhara, Atsunori ;
Matsuda, Morihiro ;
Nishizawa, Masako ;
Segawa, Katsumori ;
Tanaka, Masaki ;
Kishimoto, Kae ;
Matsuki, Yasushi ;
Murakami, Mirei ;
Ichisaka, Tomoko ;
Murakami, Hiroko ;
Watanabe, Eijiro ;
Takagi, Toshiyuki ;
Akiyoshi, Megumi ;
Ohtsubo, Tsuguteru ;
Kihara, Shinji ;
Yamashita, Shizuya ;
Makishima, Makoto ;
Funahashi, Tohru ;
Yamanaka, Shinya ;
Hiramatsu, Ryuji ;
Matsuzawa, Yuji ;
Shimomura, Iichiro .
SCIENCE, 2007, 318 (5850) :565-565
[36]   Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state [J].
Fulco, M ;
Schiltz, RL ;
Iezzi, S ;
King, MT ;
Zhao, P ;
Kashiwaya, Y ;
Hoffman, E ;
Veech, RL ;
Sartorelli, V .
MOLECULAR CELL, 2003, 12 (01) :51-62
[37]   Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt [J].
Fulco, Marcella ;
Cen, Yana ;
Zhao, Po ;
Hoffman, Eric P. ;
McBurney, Michael W. ;
Sauve, Anthony A. ;
Sartorelli, Vittorio .
DEVELOPMENTAL CELL, 2008, 14 (05) :661-673
[38]   Nampt: linking NAD biology, metabolism and cancer [J].
Garten, Antje ;
Petzold, Stefanie ;
Koerner, Antje ;
Imai, Shin-ichiro ;
Kiess, Wieland .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2009, 20 (03) :130-138
[39]   The molecular biology of the SIR proteins [J].
Gasser, SM ;
Cockell, MM .
GENE, 2001, 279 (01) :1-16
[40]   Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α [J].
Gerhart-Hines, Zachary ;
Rodgers, Joseph T. ;
Bare, Olivia ;
Lerin, Carles ;
Kim, Seung-Hee ;
Mostoslavsky, Raul ;
Alt, Frederick W. ;
Wu, Zhidan ;
Puigserver, Pere .
EMBO JOURNAL, 2007, 26 (07) :1913-1923