Controlling chaos and the inverse Frobenius-Perron problem: Global stabilization of arbitrary invariant measures

被引:36
作者
Bollt, EM [1 ]
机构
[1] USN Acad, Dept Math, Annapolis, MD 21402 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2000年 / 10卷 / 05期
关键词
D O I
10.1142/S0218127400000736
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The inverse Frobenius-Perron problem (IFPP) is a global open-loop strategy to control chaos. The goal of our IFPP is to design a dynamical system in R-n which is: (1) nearby the original dynamical system, and (2) has a desired invariant density. We reduce the question of stabilizing an arbitrary invariant measure, to the question of a hyperplane intersecting a unit hyperbox; several controllability theorems follow. We present a generalization of Baker maps with an arbitrary grammar and whose FP operator is the required stochastic matrix.
引用
收藏
页码:1033 / 1050
页数:18
相关论文
共 41 条
[11]  
Chen G., 1998, CHAOS ORDER PERSPECT
[12]  
Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398
[13]   On the construction of one-dimensional iterative maps from the invariant density: The dynamical route to the beta distribution [J].
Diakonos, FK ;
Schmelcher, P .
PHYSICS LETTERS A, 1996, 211 (04) :199-203
[14]   THE PROJECTION METHOD FOR COMPUTING MULTIDIMENSIONAL ABSOLUTELY CONTINUOUS INVARIANT-MEASURES [J].
DING, J ;
ZHOU, AH .
JOURNAL OF STATISTICAL PHYSICS, 1994, 77 (3-4) :899-908
[15]   PIECEWISE-LINEAR MARKOV APPROXIMATIONS OF FROBENIUS-PERRON OPERATORS ASSOCIATED WITH MULTIDIMENSIONAL TRANSFORMATIONS [J].
DING, J ;
ZHOU, AH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 25 (04) :399-408
[16]  
FROYLAND G, 1997, INT S NONL THEOR ITS, V2, P1129
[17]  
Froyland G., 1995, RANDOM COMPUT DYN, V3, P251
[18]  
Golub G. H., 2013, Matrix Computations
[19]   An algorithm to control chaotic behavior in one-dimensional maps [J].
Gora, P ;
Boyarsky, A .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (06) :13-22
[20]   A new approach to controlling chaotic systems [J].
Gora, P ;
Boyarsky, A .
PHYSICA D, 1998, 111 (1-4) :1-15