Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms

被引:32
作者
Evenbly, G. [1 ]
Vidal, G. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
基金
澳大利亚研究理事会;
关键词
FORMULATION;
D O I
10.1088/1367-2630/12/2/025007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ability of entanglement renormalization (ER) to generate a proper real-space renormalization group (RG) flow in extended quantum systems is analyzed in the setting of harmonic lattice systems in D = 1 and 2 spatial dimensions. A conceptual overview of the steps involved in momentum-space RG is provided and contrasted against the equivalent steps in the real-space setting. The real-space RG flow, as generated by ER, is compared against the exact results from momentum-space RG, including an investigation of a critical fixed point and the effect of relevant and irrelevant perturbations.
引用
收藏
页数:27
相关论文
共 41 条
[1]   Entanglement renormalization and topological order [J].
Aguado, Miguel ;
Vidal, Guifre .
PHYSICAL REVIEW LETTERS, 2008, 100 (07)
[2]   Entanglement properties of the harmonic chain [J].
Audenaert, K ;
Eisert, J ;
Plenio, MB ;
Werner, RR .
PHYSICAL REVIEW A, 2002, 66 (04) :14
[3]  
BARTHEL T, 2009, ARXIV09073689V2
[4]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[5]  
Cardy J. L, 1996, CAMBRIDGE LECT NOTES
[6]   Multiscale entanglement renormalization ansatz in two dimensions: Quantum Ising model [J].
Cincio, Lukasz ;
Dziarmaga, Jacek ;
Rams, Marek M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (24)
[7]  
CORBOZ P, 2009, ARXIV09044151
[8]   Fermionic multiscale entanglement renormalization ansatz [J].
Corboz, Philippe ;
Vidal, Guifre .
PHYSICAL REVIEW B, 2009, 80 (16)
[9]   Entanglement-area law for general bosonic harmonic lattice systems [J].
Cramer, M ;
Eisert, J ;
Plenio, MB ;
Dreissig, J .
PHYSICAL REVIEW A, 2006, 73 (01)
[10]   Unifying variational methods for simulating quantum many-body systems [J].
Dawson, C. M. ;
Eisert, J. ;
Osborne, T. J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (13)