Poincare-Friedrichs inequalities for piecewise H1 functions

被引:383
作者
Brenner, SC [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
Poincare-Friedrichs inequalities; piecewise H(1) functions; nonconforming finite elements; mortar methods; discontinuous Galerkin methods;
D O I
10.1137/S0036142902401311
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Poincare-Friedrichs inequalities for piecewise H(1) functions are established. They can be applied to classical nonconforming finite element methods, mortar methods, and discontinuous Galerkin methods.
引用
收藏
页码:306 / 324
页数:19
相关论文
共 30 条
[11]   Convergence of nonconforming multigrid methods without full elliptic regularity [J].
Brenner, SC .
MATHEMATICS OF COMPUTATION, 1999, 68 (225) :25-53
[12]   Nonconforming quadrilateral finite elements: a correction (vol 37, pg 253, 2000) [J].
Cai, Z ;
Douglas, J ;
Santos, JE ;
Sheen, D ;
Ye, X .
CALCOLO, 2000, 37 (04) :253-254
[13]   A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations [J].
Cai, ZQ ;
Douglas, J ;
Ye, X .
CALCOLO, 1999, 36 (04) :215-232
[14]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[15]  
Cockburn B, 2000, Discontinuous Galerkin Methods: Theory, Computation and Applications
[16]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33
[17]   On the discrete Friedrichs inequality for nonconforming finite elements [J].
Dolejsí, V ;
Feistauer, M ;
Felcman, J .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1999, 20 (5-6) :437-447
[18]  
Douglas J, 1999, RAIRO-MATH MODEL NUM, V33, P747
[19]   A NON-CONFORMING PIECEWISE QUADRATIC FINITE-ELEMENT ON TRIANGLES [J].
FORTIN, M ;
SOULIE, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (04) :505-520
[20]   A 3-DIMENSIONAL QUADRATIC NONCONFORMING ELEMENT [J].
FORTIN, M .
NUMERISCHE MATHEMATIK, 1985, 46 (02) :269-279