Statistics dependence of the entanglement entropy

被引:69
作者
Cramer, M.
Eisert, J.
Plenio, M. B.
机构
[1] Univ Potsdam, Inst Phys, D-14469 Potsdam, Germany
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, QOLS, London SW7 2BW, England
[3] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
关键词
D O I
10.1103/PhysRevLett.98.220603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The entanglement entropy of a distinguished region of a quantum many-body system reflects the entanglement in its pure ground state. Here we establish scaling laws for this entanglement in critical quasifree fermionic and bosonic lattice systems, without resorting to numerical means. We consider the setting of D-dimensional half-spaces which allows us to exploit a connection to the one-dimensional case. Intriguingly, we find a difference in the scaling properties depending on whether the system is bosonic-where an area law is proven to hold-or fermionic where we determine a logarithmic correction to the area law, which depends on the topology of the Fermi surface. We find Lifshitz quantum phase transitions accompanied with a nonanalyticity in the prefactor of the leading order term.
引用
收藏
页数:4
相关论文
共 42 条
[1]   Entanglement properties of the harmonic chain [J].
Audenaert, K ;
Eisert, J ;
Plenio, MB ;
Werner, RR .
PHYSICAL REVIEW A, 2002, 66 (04) :14
[2]   Entanglement scaling in critical two-dimensional fermionic and bosonic systems [J].
Barthel, T. ;
Chung, M. -C. ;
Schollwoeck, U. .
PHYSICAL REVIEW A, 2006, 74 (02)
[3]   Entanglement entropy beyond the free case [J].
Barthel, Thomas ;
Dusuel, Sebastien ;
Vidal, Julien .
PHYSICAL REVIEW LETTERS, 2006, 97 (22)
[4]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383
[5]   Spatial structures and localization of vacuum entanglement in the linear harmonic chain [J].
Botero, A ;
Reznik, B .
PHYSICAL REVIEW A, 2004, 70 (05) :052329-1
[6]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[7]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[8]   ON GEOMETRIC ENTROPY [J].
CALLAN, C ;
WILCZEK, F .
PHYSICS LETTERS B, 1994, 333 (1-2) :55-61
[9]   Universal terms for the entanglement entropy in 2+1 dimensions [J].
Casini, H. ;
Huerta, M. .
NUCLEAR PHYSICS B, 2007, 764 (03) :183-201
[10]   Density-matrix spectra for two-dimensional quantum systems [J].
Chung, MC ;
Peschel, I .
PHYSICAL REVIEW B, 2000, 62 (07) :4191-4193