Structural Model for Deoxycytidine Deamination Mechanisms of the HIV-1 Inactivation Enzyme APOBEC3G

被引:99
作者
Chelico, Linda [1 ]
Prochnow, Courtney [1 ]
Erie, Dorothy A. [3 ,4 ]
Chen, Xiaojiang S. [1 ,2 ]
Goodman, Myron F. [1 ,2 ]
机构
[1] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[3] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Appl & Mat Sci Curriculum, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
VIRUS-LIKE PARTICLES; CYTIDINE DEAMINASE; VIF PROTEIN; FUNCTIONAL IMPLICATIONS; CRYSTAL-STRUCTURE; TYPE-1; VIF; WILD-TYPE; 7SL RNA; DNA; DOMAIN;
D O I
10.1074/jbc.M110.107987
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
APOBEC3G (Apo3G) is a single-stranded DNA-dependent deoxycytidine deaminase, which, in the absence of the human immunodeficiency virus (HIV) viral infectivity factor, is encapsulated into HIV virions. Subsequently, Apo3G triggers viral inactivation by processively deaminating C -> U, with 3'-> 5' polarity, on nascent minus-strand cDNA. Apo3G has a catalytically inactive N-terminal CD1 domain and an active C-terminal CD2 domain. Apo3G exists as monomers, dimers, tetramers, and higher order oligomers whose distributions depend on DNA substrate and salt. Here we use multiangle light scattering and atomic force microscopy to identify oligomerization states of Apo3G. A double mutant (F126A/W127A), designed to disrupt dimerization at the predicted CD1-CD1 dimer interface, predominantly converts Apo3G to a monomer that binds single-stranded DNA, Alu RNA, and catalyzes processive C -> U deaminations with 3'-> 5' deamination polarity, similar to native Apo3G. The CD1 domain is essential for both processivity and polarity. We propose a structure-based model to explain the scanning and catalytic behavior of Apo3G.
引用
收藏
页码:16195 / 16205
页数:11
相关论文
共 51 条
[31]   A novel single-molecule study to determine protein-protein association constants [J].
Ratcliff, GC ;
Erie, DA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (24) :5632-5635
[32]   Dissecting APOBEC3G Substrate Specificity by Nucleoside Analog Interference [J].
Rausch, Jason W. ;
Chelico, Linda ;
Goodman, Myron F. ;
Le Grice, Stuart F. J. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (11) :7047-7058
[33]   A Hydrodynamic Analysis of APOBEC3G Reveals a Monomer-Dimer-Tetramer Self-Association That Has Implications for Anti-HIV Function [J].
Salter, Jason D. ;
Krucinska, Jolanta ;
Raina, Jan ;
Smith, Harold C. ;
Wedekind, Joseph E. .
BIOCHEMISTRY, 2009, 48 (45) :10685-10687
[34]   cDNAs derived from primary and small cytoplasmic Alu (scAlu) transcripts [J].
Shaikh, TH ;
Roy, AM ;
Kim, J ;
Batzer, MA ;
Deininger, PL .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 271 (02) :222-234
[35]   The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif [J].
Sheehy, AM ;
Gaddis, NC ;
Malim, MH .
NATURE MEDICINE, 2003, 9 (11) :1404-1407
[36]   Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein [J].
Sheehy, AM ;
Gaddis, NC ;
Choi, JD ;
Malim, MH .
NATURE, 2002, 418 (6898) :646-650
[37]   Multiple ways of targeting APOBEC3-virion infectivity factor interactions for anti-HIV-1 drug development [J].
Smith, Jessica L. ;
Bu, Wei ;
Burdick, Ryan C. ;
Pathak, Vinay K. .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2009, 30 (12) :638-646
[38]   Newly synthesized APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA, and subsequently activated by RNase H [J].
Soros, Vanessa B. ;
Yonemoto, Wes ;
Greene, Warner C. .
PLOS PATHOGENS, 2007, 3 (02) :152-167
[39]   HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability [J].
Stopak, K ;
de Noronha, C ;
Yonemoto, W ;
Greene, WC .
MOLECULAR CELL, 2003, 12 (03) :591-601
[40]   APOBEC3G encapsidation into HIV-1 virions: which RNA is it? [J].
Strebel, Klaus ;
Khan, Mohammad A. .
RETROVIROLOGY, 2008, 5 (1)