A third-generation H2O2 biosensor based on horseradish peroxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanopheres

被引:101
作者
Xu, Shiyi [1 ]
Peng, Bo [1 ]
Han, Xiaozu [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, Changchun 130022, Jilin, Peoples R China
关键词
hollow porous thiol-functionalized poly(DVB-co-AA) nanospheres; gold nanoparticles; horseradish peroxidase; biosensor; self-assembly;
D O I
10.1016/j.bios.2006.07.008
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A novel third-generation biosensor for hydrogen peroxide (H2O2) was developed by self-assembling gold nanoparticles to hollow porous thiol-functionalized poly(divinylbenzene-co-acrylic acid) (DVB-co-AA) nanospheres. At first, a cleaned gold electrode was immersed in hollow porous thiol-functionalized poly(DVB-co-AA) nanosphere latex to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups of the nanospheres. Finally, horseradish peroxidase (HRP) was immobilized on the surface of the gold nanoparticles. The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The resulting biosensor showed a wide linear range of 1.0 mu M-8.0 mM and a detection limit of 0.5 mu M estimated at a signal-to-noise ratio of 3. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1807 / 1810
页数:4
相关论文
共 33 条
[1]   Sol-gel-derived nanocrystalline gold-silicate composite biosensor [J].
Bharathi, S ;
Lev, O .
ANALYTICAL COMMUNICATIONS, 1998, 35 (01) :29-31
[2]   Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes [J].
Brown, KR ;
Fox, AP ;
Natan, MJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (05) :1154-1157
[3]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[4]   A one-step method to construct a third-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol-gel network on gold modified electrode [J].
Di, JW ;
Shen, CP ;
Peng, SH ;
Tu, YF ;
Li, SJ .
ANALYTICA CHIMICA ACTA, 2005, 553 (1-2) :196-200
[5]   Direct peroxidase bioelectrocatalysis on a variety of electrode materials [J].
Ferapontova, EE .
ELECTROANALYSIS, 2004, 16 (13-14) :1101-1112
[6]   Enzyme-catalyzed direct electron transfer: Fundamentals and analytical applications [J].
Ghindilis, AL ;
Atanasov, P ;
Wilkins, E .
ELECTROANALYSIS, 1997, 9 (09) :661-674
[7]   Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors [J].
Gorton, L ;
Lindgren, A ;
Larsson, T ;
Munteanu, FD ;
Ruzgas, T ;
Gazaryan, I .
ANALYTICA CHIMICA ACTA, 1999, 400 :91-108
[8]   ACCURACY OF DETERMINATION OF HYDROGEN PEROXIDE BY CERATE OXIDIMETRY [J].
HURDIS, EC ;
ROMEYN, H .
ANALYTICAL CHEMISTRY, 1954, 26 (02) :320-325
[9]   A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network [J].
Jia, JB ;
Wang, BQ ;
Wu, AG ;
Cheng, GJ ;
Li, Z ;
Dong, SJ .
ANALYTICAL CHEMISTRY, 2002, 74 (09) :2217-2223
[10]  
JIANG ZH, 1998, IMMOBILIZATION APPL, P46