An ORFeome-based analysis of human transcription factor genes and the construction of a microarray to interrogate their expression

被引:110
作者
Messina, DN [1 ]
Glasscock, J [1 ]
Gish, W [1 ]
Lovett, M [1 ]
机构
[1] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63110 USA
关键词
D O I
10.1101/gr.2584104
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcription factors (TFs) are essential regulators of gene expression, and mutated TF genes have been shown to cause numerous human genetic diseases. Yet to date, no single, comprehensive database of human TFs exists. In this work, we describe the collection of an essentially complete set of TF genes from one depiction of the human ORFeome, and the design of a microarray to interrogate their expression. Taking 1468 known TFs from TRANSFAC, InterPro, and FIyBase, we used this seed set to search the ScriptSure human transcriptome database for additional genes. ScriptSure's genome-anchored transcript clusters allowed us to work with a nonredundant high-quality representation of the human transcriptome. We used a high-stringency similarity search by using BLASTN, and a protein motif search of the human ORFeome by using hidden Markov models of DNA-binding domains known to occur exclusively or primarily in TFs. Four hundred ninety-four additional TF genes were identified in the overlap between the two searches, bringing our estimate of the total number of human TFs to 1962. Zinc finger genes are by far the most abundant family (762 members), followed by homeobox (199 members) and basic helix-loop-helix genes (117 members). We designed a microarray of 50-mer oligonucleotide probes targeted to a unique region of the coding sequence of each gene. We have successfully used this microarray to interrogate TF gene expression in species as diverse as chickens and mice, as well as in humans.
引用
收藏
页码:2041 / 2047
页数:7
相关论文
共 42 条
[1]   The gcm-motif: A novel DNA-binding motif conserved in Drosophila and mammals [J].
Akiyama, Y ;
Hosoya, T ;
Poole, AM ;
Hotta, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (25) :14912-14916
[2]   The InterPro database, an integrated documentation resource for protein families, domains and functional sites [J].
Apweiler, R ;
Attwood, TK ;
Bairoch, A ;
Bateman, A ;
Birney, E ;
Biswas, M ;
Bucher, P ;
Cerutti, T ;
Corpet, F ;
Croning, MDR ;
Durbin, R ;
Falquet, L ;
Fleischmann, W ;
Gouzy, J ;
Hermjakob, H ;
Hulo, N ;
Jonassen, I ;
Kahn, D ;
Kanapin, A ;
Karavidopoulou, Y ;
Lopez, R ;
Marx, B ;
Mulder, NJ ;
Oinn, TM ;
Pagni, M ;
Servant, F ;
Sigrist, CJA ;
Zdobnov, EM .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :37-40
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Large clusters of co-expressed genes in the Drosophila genome [J].
Boutanaev, AM ;
Kalmykova, AI ;
Shevelyov, YY ;
Nurminsky, DI .
NATURE, 2002, 420 (6916) :666-669
[5]   Online Mendelian Inheritance in Man (OMIM) as a knowledgebase for human developmental disorders [J].
Boyadjiev, SA ;
Jabs, EW .
CLINICAL GENETICS, 2000, 57 (04) :253-266
[6]   Transcription - Signal transduction and the control of gene expression [J].
Brivanlou, AH ;
Darnell, JE .
SCIENCE, 2002, 295 (5556) :813-818
[7]   Forkhead transcription factors: Key players in development and metabolism [J].
Carlsson, P ;
Mahlapuu, M .
DEVELOPMENTAL BIOLOGY, 2002, 250 (01) :1-23
[8]   Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing [J].
Castle, J ;
Garrett-Engele, P ;
Armour, CD ;
Duenwald, SJ ;
Loerch, PM ;
Meyer, MR ;
Schadt, EE ;
Stoughton, R ;
Parrish, ML ;
Shoemaker, DD ;
Johnson, JM .
GENOME BIOLOGY, 2003, 4 (10)
[9]   Gene number - What if there are only 30,000 human genes? [J].
Claverie, JM .
SCIENCE, 2001, 291 (5507) :1255-1257
[10]   Generic signals and specific outcomes:: Signaling through Ca2+, calcineurin, and NF-AT [J].
Crabtree, GR .
CELL, 1999, 96 (05) :611-614